Skip to main content
Log in

In situ ZnO–PVA nanocomposite coated microfluidic chips for biosensing

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Microfluidic chips with integrated fluid and optical connectors have been generated via a simple PDMS master-mould technique. In situ coating using a Zinc oxide polyvinylalcohol based sol–gel method results in ultrathin nanocomposite layers on the fluid channels, which makes them strongly hydrophilic and minimizes auto contamination of the chips by injected fluorescent biomarkers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. G.M. Whitesides, Nature 442, 368 (2006)

    Article  ADS  Google Scholar 

  2. G. Ocvirk, M. Munroe, T. Tang, R. Oleschuk, K. Westra, D.J. Harrison, Electrophoresis 21, 107 (2000)

    Article  Google Scholar 

  3. D. Psaltis, S.R. Quake, C. Yang, Nature 442, 381 (2006)

    Article  ADS  Google Scholar 

  4. S.R. Quake, A. Scherer, Science 290, 1536 (2000)

    Article  ADS  Google Scholar 

  5. I. Wong, C.M. Ho, MicrofluidNanofluid 7, 291 (2009)

    Google Scholar 

  6. D.C. Duffy, J.C. McDonald, O.J.A. Schueller, G.M. Whitesides, Analchem 70, 4974 (1998)

    Google Scholar 

  7. H. Hillborg, N. Tomczak, A. Olah, H. Schönherr, J.G. Vansco, Langmuir 20, 785 (2004)

    Article  Google Scholar 

  8. J.C. McDonald, D.C. Duffy, J.R. Anderson, D.T. Chiu, H. Wu, O.J.A. Schueller, G.M. Whitesides, Electrophoresis 21, 27 (2000)

    Article  Google Scholar 

  9. J.E. Mark, C.Y. Jiang, M.Y. Tang, Macromolecules 17, 2613 (1984)

    Article  ADS  Google Scholar 

  10. G.T. Roman, T. Hlaus, K.J. Bass, T.G. Seelhammer, C.T. Culbertson, Analchem 77, 1414 (2005)

    Google Scholar 

  11. G.T. Roman, C.T. Culbertson, Langmuir 22, 4445 (2006)

    Article  Google Scholar 

  12. A.R. Abate, D. Lee, T. Do, C. Holze, D.A. Weitz, Labchip 8, 516 (2008)

    Google Scholar 

  13. A.C. Eischeid, BMC Res Notes 4, 263 (2011)

    Article  Google Scholar 

  14. J.D. Hoyland, C. Kunstmann-Olsen, H.-G. Rubahn, Microelectron Eng 98, 689 (2012)

    Article  Google Scholar 

  15. J.C. MacDonald, G.M. Whitesides, Acc Chem Res 35, 491 (2002)

    Article  Google Scholar 

  16. C. Kunstmann-Olsen, J.D. Hoyland, H.-G. Rubahn, Microfluid Nanofluid 12, 795 (2012)

    Article  Google Scholar 

  17. B.H. Jo, L.M. van Lerberghe, K.M. Motsegood, D.J. Beebe, J Microelectrochem Syst 9, 76 (2000)

    Article  Google Scholar 

  18. R.P. Patil, S.S. Joshi, Mater Chem Phys 105, 354 (2007)

    Article  Google Scholar 

  19. F. Garbassi, E. Occiello, M. Morra, Polymer surfaces: from physics to technology (John Wiley and Sons, Chichester, 1994), p. ix+462

    Google Scholar 

Download references

Acknowledgments

Financial support of the INTERREG IV A program, Syddanmark-Schleswig-K.E.R.N, project #01-1.3-08. Thanks are also due to Prof. Erdmann and Jan Lenke, University of Applied Sciences, Flensburg, Germany, for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salah Habouti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Habouti, S., Kunstmann-Olsen, C., Hoyland, J.D. et al. In situ ZnO–PVA nanocomposite coated microfluidic chips for biosensing. Appl. Phys. A 115, 645–649 (2014). https://doi.org/10.1007/s00339-014-8397-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8397-0

Keywords

Navigation