Skip to main content
Log in

Thermomechanical treatment to achieve stable two-way shape memory strain without training in Ti-49.8 at.% Ni alloy

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Two-way shape memory (TWSM) strain for the Ti-49.8 at.% Ni alloy after rolling (40 % thickness reduction) at temperatures 470 \(\div \) 870 K is studied. It is found that rolling at 470 and 570 K produces samples showing the dilatation jump in the rolling direction of 0.9 and 1.3 %, respectively, that does not change upon thermal cycling through the martensite transformation temperature range. The dilatation jump in the direction normal to the rolling plane is even two to three times higher. The TWSM dilatation jump demonstrated by the samples rolled at higher temperatures stabilizes only after 30 cycles. Stability of the TWSM strain of the samples rolled at 470 and 570 K is explained from the consideration of the alloy microstructure. Material which is sufficiently large and stable with respect to thermal cycling dilatation jump is ideal for the use in actuators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J. Perkins, Shape memory effects in alloys (Plenum Press, New York, 1975), p. 583

  2. T.W. Duerig, K.N. Melton, D. Stockel, C.M. Wayman, Engineering aspects of shape memory alloys (Butterworth–Heinemann Ltd., Essex, 1990)

  3. K. Otsuka, C.M. Wayman, Shape memory materials (Cambridge University Press, Cambridge, 1999)

  4. T. Yoneyama, S. Miyazaki, Shape memory alloys for biomedical applications, (Woodhead Publishing, 2009), p 337

  5. L. Sun, W.M. Huang, Z. Ding, Y. Zhao, C.C. Wang, H. Purnawali, C. Tang et al., Mater. Des. 33(1), 577–640 (2012)

    Article  Google Scholar 

  6. V. Demers, V. Brailovski, S.D. Prokoshkin, K.E. Inaekyan, J. Mater. Process. Tech. 209(6), 3096–3105 (2009)

    Article  Google Scholar 

  7. R. Pfeifer, D. Herzog, M. Hustedt, S. Barcikowski, J. Mater. Process. Tech. 210(14), 1918–1925 (2010)

    Google Scholar 

  8. M.C. Kong, D. Axinte, W. Voice, J. Mater. Process. Tech. 211(6), 959–971 (2011)

    Google Scholar 

  9. Y. Facchinello, V. Brailovski, S.D. Prokoshkin, T. Georges, S.M. Dubinskiy, J. Mater. Process. Tech. 212(11), 2294–2304 (2012)

    Google Scholar 

  10. K. Otsuka, X. Ren, Progr. Mater. Sci. 50(5), 511–678 (2005)

    Google Scholar 

  11. T. Ezaz, H. Sehitoglu, H.J. Maier, Acta Mater. 59(15), 5893–5904 (2011)

    Google Scholar 

  12. V.G. Pushin, A.I. Lotkov, YuR Kolobov, R.Z. Valiev, E.F. Dudarev, N.N. Kuranova, A.P. Dyupin, D.V. Gunderov, G.P. Bakach, Phys. Met. Metallogr. 106(5), 520–530 (2008)

    ADS  Google Scholar 

  13. S.D. Prokoshkin, L.M. Kaputkina, T.V. Morozova, S.A. Bondareva, A.V. Markovskii, Phys. Met. Metallogr. 81(2), 223–228 (1996)

    Google Scholar 

  14. V.M. Gundyrev, V.I. Zeldovich, Phys. Met. Metallogr. 91(1), 40–43 (2001)

    Google Scholar 

  15. V. Brailovski, S. Prokoshkin, P. Terriault, F. Trochu, I.Yu. Khmelevskaya et al., Shape memory alloys: fundamentals, modeling and applications (ETS Publ., Montreal, 2003), p. 851

  16. S.D. Prokoshkin, A.V. Korotitskiy, V. Brailovski, S. Turenne, IYu. Khmelevskaya, I.B. Trubitsyna, Acta Mater. 52(15), 4479–4491 (2004)

    Google Scholar 

  17. V. Brailovski, IYu. Khmelevskaya, S.D. Prokoshkin, E.P. Ryklina, V.G. Pushin, R.Z. Valiev, Phys. Met. Metallogr. 97(Suppl. 1), 3–55 (2004)

    Google Scholar 

  18. K. Wada, Y. Liu, J. Alloys, Compd. 400(1–2), 163–170 (2005)

    Google Scholar 

  19. H. Scherngell, A.C. Kneissl, Mater. Sci. Eng. A 273–275, 400–403 (1999)

    Google Scholar 

  20. Y.X. Tong, B. Guo, F. Chen, B. Tian, L. Li, Y.F. Zheng, L.W. Ma, C.Y. Chung, Mater. Sci. Eng. A 550, 434–437 (2012)

    Google Scholar 

  21. Y. Liu, P.G. McCormick, Acta Metall. Mater. 38(7), 1321–1326 (1990)

    Google Scholar 

  22. C. Urbina, S. De la Flor, F. Ferrando, J. Alloys, Compd. 490(1–2), 499–507 (2010)

    Google Scholar 

  23. Z. Balak, S.M. Abbasi, Mater. Des. 32(7), 3992–3996 (2011)

    Google Scholar 

  24. K. Mehrabi, M. Bruncko, A.C. Kneissl, J. Alloys, Compd. 526, 45–52 (2012)

    Google Scholar 

  25. J. Perkins, G.R. Edwards, C.R. Such, J.M. Johnson, in Shape memory effects in alloys, ed. by J. Perkins (Plenum Press, New York, 1975), pp. 273–304

  26. B. Ye, B.S. Majumdar, I. Dutta, Acta Mater. 57(8), 2403–2417 (2009)

    Google Scholar 

  27. R. Lahoz, J.A. Purtolas, J. Alloys, Compd. 381(1–2), 130–136 (2004)

    Google Scholar 

  28. H.C. Kim, Y.I. Yoo, J.J. Lee, Sens. Actuators A 148(2), 437–442 (2008)

    Google Scholar 

  29. M.S. Shakeri, J. Khalil-Allafi, V. Abbasi-Chianeh, A. Ghabchi, J. Alloys Compd. 485(1–2), 320–323 (2009)

    Google Scholar 

  30. H. Tobushi, E. Pieczyska, K. Miyamoto, K. Mitsui, J. Alloys Compd. (2011). http://dx.doi.org/10.1016/j.jallcom.2011.10.108

  31. K. Kitamura, S. Miyazaki, H. Iwai, M. Kohl, Mater. Sci. Eng. A 273–275, 758–762 (1999)

    Google Scholar 

  32. J.J. Wang, T. Omori, Y. Sutou, R. Kainuma, K. Ishida, Scripta Mater. 52(4), 311–316 (2005)

    Google Scholar 

  33. S. Miyazaki, T. Imai, Y. Igo, K. Otsuka, Metall. Trans. A 17(1), 115–120 (1986)

    Google Scholar 

  34. T. Waitz, V. Kazykhanov, H.P. Karnthaler, Acta Mater. 52(1), 137–147 (2004)

    Google Scholar 

  35. S.D. Prokoshkin, V. Brailovski, A.V. Korotitskiy, K.E. Inaekyan, A.M. Glezer, Phys. Met. Metallogr. 110(3), 289–303 (2010)

    ADS  Google Scholar 

  36. T. Simon, A. Kroger, C. Somsen, A. Dlouhy, G. Eggeler, Acta Mater. 58(5), 1850–1860 (2010)

    Google Scholar 

  37. M.P. Kashchenko, V.G. Chashchina, Phys.-Uspekhi 54(4), 331–349 (2011)

    ADS  Google Scholar 

  38. B. Kockar, I. Karaman, J.I. Kim, Y. Chumlyakov, Scripta Mater. 54, 2203–2208 (2006)

    Google Scholar 

  39. D.A. Miller, D.C. Lagoudas, Mater. Sci. Eng. A 308(1–2), 161–175 (2001)

    Google Scholar 

  40. H. Scherngell, A.C. Kneissl, Acta Mater. 50(2), 327–341 (2002)

    Google Scholar 

  41. V.G. Pushin, V.V. Stolyarov, R.Z. Valiev, N.I. Kourov, N.N. Kuranova, E.A. Prokofiev et al., Ann. Chim. Sci. Mater. 27(3), 77–88 (2002)

    Google Scholar 

  42. V. Demers, V. Brailovski, S.D. Prokoshkin, K.E. Inaekyan, Mater. Sci. Eng. A 513–514(1–7), 185–196 (2009)

    Google Scholar 

  43. E.P. Ryklina, S.D. Prokoshkin, A. Yu. Kreytsberg, J. Alloys Compd. (2012). http://dx.doi.org/10.1016/j.jallcom.2012.02.138

  44. S.D. Prokoshkin, L.M. Kaputkina, T.V. Morozova, IYu. Khmelevskaya et al., Phys. Met. Metallogr. 80(3), 277–282 (1995)

    Google Scholar 

  45. V.I. Zel’dovich, G.A. Sobyanina, O.S. Rinkevich, Phys. Met. Metallogr. 81(3), 305–312 (1996)

    Google Scholar 

  46. S.D. Prokoshkin, IYu. Khmelevskaya, A.V. Khmelevskii, A.V. Korotitskii, V.I. Zel’dovich, A.G. Khundzhua, YuI Chumlyakov, Phys. Met. Metallogr. 98(6), 596–604 (2004)

    Google Scholar 

  47. R.I. Babicheva, I.Z. Sharipov, K.Y. Mulyukov, Mater. Sci. Forum 667–669, 985–990 (2011)

    Google Scholar 

  48. R.I. Babicheva, I.Z. Sharipov, K.Y. Mulyukov, Phys. Solid State 53(9), 1947–1951 (2011)

    Google Scholar 

  49. R.I. Babicheva, K.Y. Mulyukov, I.Z. Sharipov, I.M. Safarov, Phys. Solid State 54(7), 1480–1485 (2012)

    Google Scholar 

  50. V.N. Khachin, V.E. Gyunter, L.A. Monasevich, Yul Paskal’, Izvestiya Vysshikh Uchebnykh Zavedenii. Fizika 5, 95–101 (1977)

    Google Scholar 

  51. K. Nurveren, A. Akdoan, W.M. Huang, J. Mater. Process. Tech. 196(1–3), 129–134 (2008)

    Google Scholar 

  52. M. Morakabati, M. Aboutalebi, Sh Kheirandish, A.K. Taheri, S.M. Abbasi, Mater. Des. 32(1), 406–413 (2011)

    Google Scholar 

  53. N.G. Jones, S.L. Raghunathan, D. Dye, Metall. Mater. Trans. A 41(4), 912–921 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rita I. Babicheva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Babicheva, R.I., Mulyukov, K.Y. Thermomechanical treatment to achieve stable two-way shape memory strain without training in Ti-49.8 at.% Ni alloy. Appl. Phys. A 116, 1857–1865 (2014). https://doi.org/10.1007/s00339-014-8345-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8345-z

Keywords

Navigation