Skip to main content
Log in

Gold nanosphere propulsion by using femtosecond laser-excited enhanced near field

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We propose nanosphere propulsion by using femtosecond laser-excited enhanced near field based on the theoretical calculations and experimental study. The optical intensity distribution and enhancement around a gold nanosphere on a silicon substrate was simulated by a 3D finite-difference time-domain method. The sphere velocities and propelled angles were calculated based on the optical intensity distribution. In our simulation, we calculated the optical intensity for the gold nanospheres with a diameter ranging from 100 to 600 nm. Calculation results show that the sphere velocity was fairly constant for the diameters ranging from 100 to 250 nm, while the velocity decreased for diameters larger than 250 nm. The propelled angle could be controlled up to only 4.6° by varying the incident angles of p-polarized waves. We have demonstrated the gold nanosphere propulsion in experiment. The gold nanospheres with a diameter of 200 nm were used in our experiments. The propelled gold particles have been melted by laser irradiation and deposited on the receiver substrate. The size and spatial distributions of gold particles have been investigated. The decrease in the laser spot size and the gap distance between the donor and receiver substrate would realize the reduction in the existence region of gold particles on the receiver substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. A. Kantrowi, Astronaut Aeronaut 10, 74 (1972)

    Google Scholar 

  2. N. Zhang, Y.B. Zhao, X.N. Zhu, Opt Exp 12, 3590 (2004)

    Article  ADS  Google Scholar 

  3. A. Palla-Papavlu, V. Dinca, I. Paraico, A. Moldovan, J. Shaw-Stewart, C.W. Schneider, E. Kovacs, T. Lippert, M. Dinescu, J Appl Phys 108, 033111 (2010)

    Article  ADS  Google Scholar 

  4. V. Menezes, K. Takayama, T. Ohki, Gopalan. Appl Phys Lett 87, 163504 (2005)

    Article  ADS  Google Scholar 

  5. J. Boneberg, A. Habenicht, D. Benner, P. Leiderer, M. Trautvetter, C. Pfahler, A. Plettl, P. Ziemann, Appl Phys A 93, 415 (2008)

    Article  ADS  Google Scholar 

  6. K. Wang, E. Schonbrun, K.B. Crozier, Nano Lett 9, 2623 (2009)

    Article  ADS  Google Scholar 

  7. M. Terakawa, S. Takeda, Y. Tanaka, G. Obara, T. Miyanishi, T. Sakai, T. Sumiyoshi, H. Sekita, M. Hasegawa, P. Viktorovitch, M. Obara, Prog Quant Electron 36, 194 (2012)

    Article  ADS  Google Scholar 

  8. E. D. Palick (ed), “Handbook of Optical Constant of Solids” (Naval Research Laboratory, Washington D. C. 1985)

  9. T. Sakai, T. Miyanishi, N.N. Nedyalkov, Y. Nishizawa, M. Obara, J Phys D Appl Phys 42, 025502 (2009)

    Article  ADS  Google Scholar 

  10. I. Barin, Thermochemical data of pure substances, 2nd edn. (VCH, New York, 1993)

  11. I.H. Chowdhury, X.F. Xu, Numer Heat Transf Part A Appl 44, 219–232 (2003)

    Article  ADS  Google Scholar 

  12. N.N. Nedyalkov, S. Imamova, P.A. Atanasov, Y. Tanaka, M. Obara, J Nanopart Res 13, 2181 (2011)

    Article  Google Scholar 

  13. D. Eversole, B. Luk’yanchuk, A. Ben-Yakar, Appl Phys A 89, 283 (2007)

    Article  ADS  Google Scholar 

  14. N.N. Nedyalkov, P.A. Atanasov, M. Obara, Nanotechnology 18, 305703 (2007)

    Article  Google Scholar 

  15. T. Miyanishi, Y. Tanaka, M. Terakawa, M. Obara, Jpn J Appl Phys 49, 055001 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This study is supported in part by KAKENHI Grant Number 23650310.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitsuhiro Terakawa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shinohara, T., Terakawa, M. Gold nanosphere propulsion by using femtosecond laser-excited enhanced near field. Appl. Phys. A 116, 1025–1031 (2014). https://doi.org/10.1007/s00339-014-8328-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8328-0

Keywords

Navigation