Skip to main content
Log in

Morphological and optical properties of soft-landed supported nanoclusters: effect of rapid thermal annealing

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We report the formation of large islands of bi-modal lateral size distributions having one peak at lateral size ∼100 nm (height ∼70 nm) and another at ∼160 nm (height ∼110 nm) by soft-landing of size-selected copper nanoclusters (3 nm in diameter) at room temperature (26 °C). Si(100) wafer containing native oxide is used as substrate. Transmission electron microscopy (TEM), scanning electron microscopy (SEM) and atomic force microscopy (AFM) are employed to study the morphological aspects and for optical aspect cathodoluminescence measurement is used. Rapid thermal annealing (RTA) (200 °C, dry N2, 120 s) induced effects on the morphology shows that individual islands are morphologically stable. A careful qualitative study of the optical property using cathodoluminescence in a SEM before and after the thermal treatment, using RTA, reveals very low diffusion of the cluster material into the substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. V.N. Popok, I. Barke, E.E.B. Campbell, K.-H. Meiwes-Broer, Clustersurface interaction: from soft landing to implantation. Surf. Sci. Rep. 66, 347–377 (2011)

    ADS  Google Scholar 

  2. P. Jensen, Growth of nanostructures by cluster deposition:experiments and simple models. Rev. Mod. Phys. 71, 1695–1735 (1999)

    Article  ADS  Google Scholar 

  3. C. Binns, Clusters at surfaces. Surf. Sci. Rep. 44, 1–49 (2001)

    ADS  Google Scholar 

  4. G. Palasantzas, S.A. Koch, J.Th.M. De Hosson, Growth front roughening of room-temperature deposited copper nanocluster films. Appl. Phys. Lett. 81, 1089–1091 (2002)

    ADS  Google Scholar 

  5. S. Mondal, B. Satpati, S.R. Bhattacharyya, Formation of monodispersed films from size-selected copper nanoclusters. J. Nanosci. Nanotechnol. 14 (2014)

  6. H. Haberland, Z. Insepov, M. Moseler, Molecular-dynamics simulation of thin-film growth by energetic cluster impact. Phys. Rev. B. 51, 11061–11067 (1995)

    ADS  Google Scholar 

  7. N. Grönhagen, T.T. Järvi, N. Miroslawski, H. Hövel, M. Moseler, Decay kinetics of cluster-beam-deposited metal particles. J. Phys. Chem. C. 116, 19327–19334 (2012)

    Google Scholar 

  8. M. Nesselberge, M. Roefzaad, R.F. Hamou, P.U. Biedermann, F.F. Schweinberger, S. Kunz, K. Schloegl, G.K.H. Wiberg, S. Ashton, U. Heiz, K.J.J. Mayrhofer, M. Arenz, Nat. Mater. (2013). doi:10.1038/nmat3712.

  9. Y.N. Ovchinnikov, V.Z. Kresin, Theoretical investigation of Josephson tunneling between nanoclusters. Phys. Rev. B. 81, 214505(1–6) (2010)

  10. Y.N. Ovchinnikov, V.Z. Kresin, Cluster-based superconducting tunneling networks. Phys. Rev. B. 85, 064518(1–3) (2012)

  11. L. Bardotti, P. Jensen, A. Hoareau, M. Treilleux, B. Cabaud, Experimental observation of fast diffusion of large antimony clusters on graphite surfaces. Phys. Rev. Lett. 74, 4694–4697 (1995)

    Google Scholar 

  12. S. Mondal, S. Jana, S.R. Bhattacharyya, Size-selected copper nanolclusters for fabrication of isolated size-controlled nanostructures. AIP Conf. Proc. 1536, 203–204 (2013)

    ADS  Google Scholar 

  13. M. Setton, J. Van der Spiegel, B. Rothman, Copper silicide formation by rapid thermal processing and induced room-temperature Si oxide growth. Appl. Phys. Lett. 57, 357–359 (1990)

    ADS  Google Scholar 

  14. P. Das, T.K. Chini, An advanced cathodoluminescence facility in a high-resolution scanning electron microscope for nanostructure characterization. Curr. Sci. 101, 849–854 (2011)

    Google Scholar 

  15. Y. Enomoto, M. Sawa, Simulation study on nanocluster growth deposited on a substrate. Physica A. 331, 189197 (2004)

    Google Scholar 

  16. P.V. Kashtanov, R. Hippler, B.M. Smirnov, S.R. Bhattacharyya, Thermal fragmentation of nano-size clusters on surfaces. Euro. Phys. Lett. 90, 16001 (p1–p4) (2010)

    Google Scholar 

  17. S. Tsunekawa, K. Ishikawa, Z.-Q. Li, Y. Kawazoe, A. Kasuya, Origin of Anomalous lattice expansion in oxide nanoparticles. Phys. Rev. Lett. 85, 3440–3443 (2000)

    ADS  Google Scholar 

  18. E. Loginov, F.G. Luis, A. Vilesov, Surface deposition and imaging of large Ag clusters formed in He droplets. J. Phys. Chem. A. 115, 7199–7204 (2011)

    Google Scholar 

  19. S.B. Emery, K.B. Rider, B.K. Little, A.M. Schrand, C.M. Lindsay, Magnesium cluster film synthesis by helium nanodroplets. J. Chem. Phys. 139 (1–6), 054307 (2013)

    ADS  Google Scholar 

  20. A. Perez, P. Melinon, V. Dupuis, P. Jensen, B. Prevel, J. Tuaillon, L. Bardotti, C. Martet, M. Treilleux, M. Broyer, M. Pellarin, J.L. Vaille, B. Palpant, J. Lerme, Cluster assembled materials: a novel class of nanostructured solids with original structures and properties. J. Phys. D: Appl. Phys. 30, 709721 (1997)

    Google Scholar 

  21. L. Bardotti, B. Prével, P. Jensen, M. Treilleux, P. Mélinon, A. Perez, J. Gierak, G. Faini, D. Mailly, Organizing nanoclusters on functionalized surfaces. Appl. Surf. Sci. 191, 205–210 (2002)

    ADS  Google Scholar 

  22. H.Y. Jung, H. Chun, S. Park, S.-H. Kang, C.W. Ahn, Y.-K. Kwon, M. Upmanyu, P.M. Ajayan, Y.J. Jung, Liquid metal droplet dynamics inside nanocontainers. Nature Sci. Rep. 3, 2588 (2013). doi:10.1038/srep02588

    ADS  Google Scholar 

  23. G. Antczak, G. Ehrlich, Surface diffusion: metals, metal atoms, and clusters. (Cambridge University Press, Cambridge, 2010), pp. 64–65

  24. P. Jensen, A.L. Barabasi, H. Larralde, S. Havlin, H.E. Stanley, Deposition, diffusion, and aggregation of atoms on surfaces: a model for nanostructure growth. Phys. Rev. B. 50, 15316–15329 (1994)

    ADS  Google Scholar 

  25. G. Ge, L.E. Brus, Fast surface diffusion of large disk-shaped nanocrystal aggregates. Nano Lett. 1, 219–222 (2001)

    ADS  Google Scholar 

  26. P. Das, T.K. Chini, Enhanced ultraviolet–visible cathodoluminescence from Ar+ beam-induced nano-patterned silicon. J. Lumin. 131, 2769–2774 (2011)

    Google Scholar 

Download references

Acknowledgements

We acknowledge Dr. T. Som for AFM measurements and Mr. Souvik Banerjee for help during SEM studies and Dr. B. Satpati for TEM study. We also thank Mr. Pabitra Das for CL study and useful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shyamal Mondal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mondal, S., Bhattacharyya, S.R. Morphological and optical properties of soft-landed supported nanoclusters: effect of rapid thermal annealing. Appl. Phys. A 116, 1621–1626 (2014). https://doi.org/10.1007/s00339-014-8290-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8290-x

Keywords

Navigation