Skip to main content
Log in

Highly efficient inverted polymer solar cells using aqueous ammonia processed ZnO as an electron selective layer

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The authors demonstrate a simple method to deposit solution-processable ZnO thin film by directly dissolving the ZnO powder into aqueous ammonia. ZnO film casting from its aqueous ammonia solution (a-ZnO) is used successfully as an electron selective layer in poly(3-hexylthiophene) and indene-C60 bisadduct (IC60BA) based heterojunction solar cells with improved power conversion efficiency (PCE) compared with that using conventional solgel based ZnO (c-ZnO). The improved PCE is mainly attributed to an increase of short-circuit current density owing to the better transmittance of a-ZnO than that of c-ZnO in the absorption range of IC60BA, and efficient electron extraction at cathode. In addition, no additional by-products originated from the organic solvents are introduced as like in solgel based ZnO films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M.A. Green, K. Emery, Y. Hishikawa, W. Warta, E.D. Dunlop, Prog. Photovolt. 20, 12 (2012)

    Article  Google Scholar 

  2. H. Ohkita, S. Cook, Y. Astuti, W. Duffy, S. Tierney, W. Zhang, J. Am. Chem. Soc. 130, 3030 (2008)

    Article  Google Scholar 

  3. C. Deibel, Phys. Status Solidi A 206, 2731 (2009)

    Google Scholar 

  4. L.M. Chen, Z. Xu, Z. Hong, Y. Yang, J. Mater. Chem. 20, 2575 (2010)

    Google Scholar 

  5. A.J. Das, K.S. Narayan, Adv. Mater. 25, 2193 (2013)

    Article  Google Scholar 

  6. J. You, C. Chen, Z. Hong, K. Yoshimura, K. Ohya, R. Xu, S. Ye, J. Gao, G. Li, Y. Yang, Adv. Mater. 25, 3973 (2013)

    Article  Google Scholar 

  7. S. Günes, H. Neugebauer, N.S. Sariciftci, Chem. Rev. 107, 1324 (2007)

    Article  Google Scholar 

  8. P. Peumans, S.R. Forrest, Appl. Phys. Lett. 79, 126 (2001)

    Article  ADS  Google Scholar 

  9. X.Z. Zhu, C.H. Gao, M.F. Xu, W. Gu, X.B. Shi, Y.L. Lei, Synth. Met. 162, 2212 (2012)

    Article  Google Scholar 

  10. M.F. Xu, L.S. Cui, X.Z. Zhu, C.H. Gao, X.B. Shi, Z.M. Jin, Org. Electron. 14, 657 (2013)

    Article  Google Scholar 

  11. K.W. Wong, H.L. Yip, Y. Luo, K.Y. Wong, W.M. Lau, K.H. Low, Appl. Phys. Lett. 80, 2788 (2002)

    Article  ADS  Google Scholar 

  12. V. Shrotriya, G. Li, Y. Yao, C.W. Chu, Y. Yang, Appl. Phys. Lett. 88, 073508 (2006)

    Article  ADS  Google Scholar 

  13. J.H. Huang, D. Kekuda, C.W. Chu, K.C. Ho, J. Mater. Chem. 19, 3704 (2009)

    Google Scholar 

  14. Y. Kinoshita, R. Takenaka, H. Murata, Appl. Phys. Lett. 92, 243309 (2008)

    Article  ADS  Google Scholar 

  15. Y. Liu, R. Dhakal, V. Dalal, J. Kim, Appl. Phys. Lett. 101, 233904 (2012)

    Article  ADS  Google Scholar 

  16. D.W. Zhao, P. Liu, X.W. Sun, S.T. Tan, L. Ke, A.K.K. Kyaw, Appl. Phys. Lett. 95, 153304 (2009)

    Article  ADS  Google Scholar 

  17. P. De Bruyn, D.J.D. Moet, P.W.M. Blom, Org. Electron. 11, 1419 (2010)

    Article  Google Scholar 

  18. Y. Sun, J.H. Seo, C.J. Takacs, J. Seifter, A.J. Heeger, Adv. Mater. 23, 679 (2011)

    Google Scholar 

  19. M.H. Park, J.H. Li, A. Kumar, G. Li, Y. Yang, Adv. Funct. Mater. 19, 1241 (2009)

    Article  Google Scholar 

  20. J.C. Wang, W.T. Weng, M.Y. Tsai, M.K. Lee, S.F. Horng, T.P. Perng, J. Mater. Chem. 20, 862 (2010)

    Google Scholar 

  21. B.N. Illy, A.C. Cruickshank, S. Schumann, R. Da Campo, T.S. Jones, S. Heutz, J. Mater. Chem. 21, 12949 (2011)

    Google Scholar 

  22. S. Chen, C.E. Small, C.M. Amb, J. Subbiah, T.H. Lai, S.W. Tsang, Adv. Energy Mater. 2, 1333 (2012)

    Google Scholar 

  23. S.T. Meyers, J.T. Anderson, C.M. Hung, J. Thompson, J.F. Wager, D.A. Keszler, J. Am. Chem. Soc. 130, 17603 (2008)

    Google Scholar 

  24. L. Spanhel, M.A. Anderson, J. Am. Chem. Soc. 113, 2826 (1991)

    Google Scholar 

  25. C. Pacholski, A. Kornowski, H. Weller, Angew. Chem. Int. Ed. 41, 1188 (2002)

    Google Scholar 

  26. E. Hosono, S. Fujihara, T. Kimura, H. Imai, J. Sol–Gel Sci. Tech. 29, 71 (2004)

    Google Scholar 

  27. L. Znaidi, Mater. Sci. Eng., B 174, 18 (2010)

    Google Scholar 

  28. S. Bai, Z. Wu, X. Xu, Y. Jin, B. Sun, X. Guo, Appl. Phys. Lett. 100, 203906 (2012)

    ADS  Google Scholar 

  29. Y. Ka, E. Lee, S.Y. Park, J. Seo, D.G. Kwon, H.H. Lee, Org. Electron. 14, 100 (2013)

    Google Scholar 

  30. Y. Zhang, G. Du, X. Wang, W. Li, X. Yang, Y. Ma, J. Cryst. Growth 252, 180 (2003)

    ADS  Google Scholar 

  31. X.Q. Wei, B.Y. Man, M. Liu, C.S. Xue, H.Z. Zhuang, C. Yang, Phys. B 388, 145 (2007)

    ADS  Google Scholar 

  32. C.J. Brabec, A. Cravino, D. Meissner, N.S. Sariciftci, T. Fromherz, M.T. Rispens, Adv. Funct. Mater. 11, 374 (2001)

    Google Scholar 

  33. Y.H. Lin, Y.T. Tsai, C.C. Wu, C.H. Tsai, C.H. Chiang, H.F. Hsu, Org. Electron. 13, 2333 (2012)

    Google Scholar 

  34. J. Gmeiner, S. Karg, M. Meier, W. Rieß, P. Strohriegl, M. Schwoerer, Acta Polymer. 44, 201 (1993)

    Google Scholar 

  35. Z. Wang, Y. Lou, S. Naka, H. Okada, ACS Appl. Mater. Interfaces 3, 2496 (2011)

    Google Scholar 

  36. Z. Wang Z, Y. Lou, S. Naka, H. Okada, Appl. Phys. Lett. 98, 063302 (2011)

    ADS  Google Scholar 

  37. C.H. Gao, S.D. Cai, W. Gu, D.Y. Zhou, Z.K. Wang, L.S. Liao, ACS Appl. Mater. Interfaces 4, 5211 (2012)

    Google Scholar 

  38. C.H. Gao, X.Z. Zhu, L. Zhang, D.Y. Zhou, Z.K. Wang, L.S. Liao, Appl. Phys. Lett. 102, 153301 (2013)

    ADS  Google Scholar 

Download references

Acknowledgments

We acknowledge financial support from the Natural Science Foundation of China (Nos. 21161160446, 61036009, 61177016, and 61307036), the National High-Tech Research Development Program (No. 2011AA03A110), the Natural Science Foundation of Jiangsu Province (No. BK2010003) and the Key University Science Research Project of Jiangsu Province (12KJB510028). This is also a project supported by Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), and by the Fund for Excellent Creative Research Teams of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhao-Kui Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, XZ., Zu, FS., Xu, MF. et al. Highly efficient inverted polymer solar cells using aqueous ammonia processed ZnO as an electron selective layer. Appl. Phys. A 116, 993–999 (2014). https://doi.org/10.1007/s00339-014-8275-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8275-9

Keywords

Navigation