Applied Physics A

, Volume 116, Issue 3, pp 993–999 | Cite as

Highly efficient inverted polymer solar cells using aqueous ammonia processed ZnO as an electron selective layer

  • Xiao-Zhao Zhu
  • Feng-Shuo Zu
  • Mei-Feng Xu
  • Xiao-Bo Shi
  • Zhi-Ming Jin
  • Zhao-Kui WangEmail author
  • Liang-Sheng Liao


The authors demonstrate a simple method to deposit solution-processable ZnO thin film by directly dissolving the ZnO powder into aqueous ammonia. ZnO film casting from its aqueous ammonia solution (a-ZnO) is used successfully as an electron selective layer in poly(3-hexylthiophene) and indene-C60 bisadduct (IC60BA) based heterojunction solar cells with improved power conversion efficiency (PCE) compared with that using conventional solgel based ZnO (c-ZnO). The improved PCE is mainly attributed to an increase of short-circuit current density owing to the better transmittance of a-ZnO than that of c-ZnO in the absorption range of IC60BA, and efficient electron extraction at cathode. In addition, no additional by-products originated from the organic solvents are introduced as like in solgel based ZnO films.


Aqueous Ammonia Power Conversion Efficiency Polymer Solar Cell Ultraviolet Photoelectron Spectroscopy Styrene Sulfonic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We acknowledge financial support from the Natural Science Foundation of China (Nos. 21161160446, 61036009, 61177016, and 61307036), the National High-Tech Research Development Program (No. 2011AA03A110), the Natural Science Foundation of Jiangsu Province (No. BK2010003) and the Key University Science Research Project of Jiangsu Province (12KJB510028). This is also a project supported by Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), and by the Fund for Excellent Creative Research Teams of Jiangsu Higher Education Institutions.


  1. 1.
    M.A. Green, K. Emery, Y. Hishikawa, W. Warta, E.D. Dunlop, Prog. Photovolt. 20, 12 (2012)CrossRefGoogle Scholar
  2. 2.
    H. Ohkita, S. Cook, Y. Astuti, W. Duffy, S. Tierney, W. Zhang, J. Am. Chem. Soc. 130, 3030 (2008)CrossRefGoogle Scholar
  3. 3.
    C. Deibel, Phys. Status Solidi A 206, 2731 (2009)Google Scholar
  4. 4.
    L.M. Chen, Z. Xu, Z. Hong, Y. Yang, J. Mater. Chem. 20, 2575 (2010)Google Scholar
  5. 5.
    A.J. Das, K.S. Narayan, Adv. Mater. 25, 2193 (2013)CrossRefGoogle Scholar
  6. 6.
    J. You, C. Chen, Z. Hong, K. Yoshimura, K. Ohya, R. Xu, S. Ye, J. Gao, G. Li, Y. Yang, Adv. Mater. 25, 3973 (2013)CrossRefGoogle Scholar
  7. 7.
    S. Günes, H. Neugebauer, N.S. Sariciftci, Chem. Rev. 107, 1324 (2007)CrossRefGoogle Scholar
  8. 8.
    P. Peumans, S.R. Forrest, Appl. Phys. Lett. 79, 126 (2001)ADSCrossRefGoogle Scholar
  9. 9.
    X.Z. Zhu, C.H. Gao, M.F. Xu, W. Gu, X.B. Shi, Y.L. Lei, Synth. Met. 162, 2212 (2012)CrossRefGoogle Scholar
  10. 10.
    M.F. Xu, L.S. Cui, X.Z. Zhu, C.H. Gao, X.B. Shi, Z.M. Jin, Org. Electron. 14, 657 (2013)CrossRefGoogle Scholar
  11. 11.
    K.W. Wong, H.L. Yip, Y. Luo, K.Y. Wong, W.M. Lau, K.H. Low, Appl. Phys. Lett. 80, 2788 (2002)ADSCrossRefGoogle Scholar
  12. 12.
    V. Shrotriya, G. Li, Y. Yao, C.W. Chu, Y. Yang, Appl. Phys. Lett. 88, 073508 (2006)ADSCrossRefGoogle Scholar
  13. 13.
    J.H. Huang, D. Kekuda, C.W. Chu, K.C. Ho, J. Mater. Chem. 19, 3704 (2009)Google Scholar
  14. 14.
    Y. Kinoshita, R. Takenaka, H. Murata, Appl. Phys. Lett. 92, 243309 (2008)ADSCrossRefGoogle Scholar
  15. 15.
    Y. Liu, R. Dhakal, V. Dalal, J. Kim, Appl. Phys. Lett. 101, 233904 (2012)ADSCrossRefGoogle Scholar
  16. 16.
    D.W. Zhao, P. Liu, X.W. Sun, S.T. Tan, L. Ke, A.K.K. Kyaw, Appl. Phys. Lett. 95, 153304 (2009)ADSCrossRefGoogle Scholar
  17. 17.
    P. De Bruyn, D.J.D. Moet, P.W.M. Blom, Org. Electron. 11, 1419 (2010)CrossRefGoogle Scholar
  18. 18.
    Y. Sun, J.H. Seo, C.J. Takacs, J. Seifter, A.J. Heeger, Adv. Mater. 23, 679 (2011)Google Scholar
  19. 19.
    M.H. Park, J.H. Li, A. Kumar, G. Li, Y. Yang, Adv. Funct. Mater. 19, 1241 (2009)CrossRefGoogle Scholar
  20. 20.
    J.C. Wang, W.T. Weng, M.Y. Tsai, M.K. Lee, S.F. Horng, T.P. Perng, J. Mater. Chem. 20, 862 (2010)Google Scholar
  21. 21.
    B.N. Illy, A.C. Cruickshank, S. Schumann, R. Da Campo, T.S. Jones, S. Heutz, J. Mater. Chem. 21, 12949 (2011)Google Scholar
  22. 22.
    S. Chen, C.E. Small, C.M. Amb, J. Subbiah, T.H. Lai, S.W. Tsang, Adv. Energy Mater. 2, 1333 (2012)Google Scholar
  23. 23.
    S.T. Meyers, J.T. Anderson, C.M. Hung, J. Thompson, J.F. Wager, D.A. Keszler, J. Am. Chem. Soc. 130, 17603 (2008)Google Scholar
  24. 24.
    L. Spanhel, M.A. Anderson, J. Am. Chem. Soc. 113, 2826 (1991)Google Scholar
  25. 25.
    C. Pacholski, A. Kornowski, H. Weller, Angew. Chem. Int. Ed. 41, 1188 (2002)Google Scholar
  26. 26.
    E. Hosono, S. Fujihara, T. Kimura, H. Imai, J. Sol–Gel Sci. Tech. 29, 71 (2004)Google Scholar
  27. 27.
    L. Znaidi, Mater. Sci. Eng., B 174, 18 (2010)Google Scholar
  28. 28.
    S. Bai, Z. Wu, X. Xu, Y. Jin, B. Sun, X. Guo, Appl. Phys. Lett. 100, 203906 (2012)ADSGoogle Scholar
  29. 29.
    Y. Ka, E. Lee, S.Y. Park, J. Seo, D.G. Kwon, H.H. Lee, Org. Electron. 14, 100 (2013)Google Scholar
  30. 30.
    Y. Zhang, G. Du, X. Wang, W. Li, X. Yang, Y. Ma, J. Cryst. Growth 252, 180 (2003)ADSGoogle Scholar
  31. 31.
    X.Q. Wei, B.Y. Man, M. Liu, C.S. Xue, H.Z. Zhuang, C. Yang, Phys. B 388, 145 (2007)ADSGoogle Scholar
  32. 32.
    C.J. Brabec, A. Cravino, D. Meissner, N.S. Sariciftci, T. Fromherz, M.T. Rispens, Adv. Funct. Mater. 11, 374 (2001)Google Scholar
  33. 33.
    Y.H. Lin, Y.T. Tsai, C.C. Wu, C.H. Tsai, C.H. Chiang, H.F. Hsu, Org. Electron. 13, 2333 (2012)Google Scholar
  34. 34.
    J. Gmeiner, S. Karg, M. Meier, W. Rieß, P. Strohriegl, M. Schwoerer, Acta Polymer. 44, 201 (1993)Google Scholar
  35. 35.
    Z. Wang, Y. Lou, S. Naka, H. Okada, ACS Appl. Mater. Interfaces 3, 2496 (2011)Google Scholar
  36. 36.
    Z. Wang Z, Y. Lou, S. Naka, H. Okada, Appl. Phys. Lett. 98, 063302 (2011)ADSGoogle Scholar
  37. 37.
    C.H. Gao, S.D. Cai, W. Gu, D.Y. Zhou, Z.K. Wang, L.S. Liao, ACS Appl. Mater. Interfaces 4, 5211 (2012)Google Scholar
  38. 38.
    C.H. Gao, X.Z. Zhu, L. Zhang, D.Y. Zhou, Z.K. Wang, L.S. Liao, Appl. Phys. Lett. 102, 153301 (2013)ADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Xiao-Zhao Zhu
    • 1
  • Feng-Shuo Zu
    • 1
  • Mei-Feng Xu
    • 1
  • Xiao-Bo Shi
    • 1
  • Zhi-Ming Jin
    • 1
  • Zhao-Kui Wang
    • 1
    Email author
  • Liang-Sheng Liao
    • 1
  1. 1.Jiangsu Key Laboratory for Carbon-Based Functional Materials and DevicesCollaborative Innovation Center of Suzhou Nano Science and Technology, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow UniversitySuzhouChina

Personalised recommendations