Skip to main content

Advertisement

Log in

Near-field-enhanced, off-resonant laser sintering of semiconductor particles for additive manufacturing of dispersed Au–ZnO-micro/nano hybrid structures

  • Invited paper
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Off-resonant near-field enhancement by gold nanoparticles adsorbed on crystalline zinc oxide significantly increases the energy efficiency of infrared laser sintering. In detail, ten different gold mass loads on zinc oxide were exposed to 1,064 nm cw-laser radiation. Variation of scan speed, laser power, and spot size showed that the energy threshold required for sintering decreases and sintering process window widens compared to laser sintering of pure zinc oxide powder. Transmission electron microscope analysis after focused ion beam cross sectioning of the sintered particles reveals that supported gold nanoparticles homogenously resolidify in the sintered semiconductor matrix. The enhanced sintering process with ligand-free gold nanoparticles gives access to metal–semiconductor hybrid materials with potential application in light harvesting or energy conversion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. S. Hong, J. Yeo, G. Kim, D. Kim, H. Lee, J. Kwon, H. Lee, P. Lee, S. Ko, ACS Nano 7, 5024 (2013)

    Article  Google Scholar 

  2. M. Agarwala, D. Bourell, J. Beaman, H. Marcus, J. Barlow, Rapid Prototyp. J. 1, 26 (1995)

    Article  Google Scholar 

  3. N. Tolochko, Y. Khlopkov, S. Mozzharov, M. Ignatiev, T. Laoui, V. Titov, Rapid Prototyp. J. 6, 155 (2000)

    Article  Google Scholar 

  4. S. Dudziak, M. Gieseke, H. Haferkamp, S. Barcikowski, D. Kracht, Phys. Procedia 5, 607 (2010)

    Article  Google Scholar 

  5. B. Zhu, C. Xie, A. Wang, J. Wu, R. Wu, J. Liu, J. Mater. Sci. 42, 5416 (2007)

    Article  ADS  Google Scholar 

  6. Y. Kathuria, Surf. Coat. Technol. 116, 643 (1999)

    Article  Google Scholar 

  7. N. Crespo-Monteiro, N. Destouches, L. Saviot, S. Reynuad, T. Epicier, E. Gamet, L. Bios, A. Boukenter, J. Phys. Chem. C 116, 26857 (2012)

    Article  Google Scholar 

  8. É. Boulais, R. Lachaine, M. Meunier, Nano Lett. 12, 4763 (2012)

    Article  ADS  Google Scholar 

  9. Ü. Özgür, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, H. Morkoç, J. Appl. Phys. 98, 41301 (2005)

    Article  Google Scholar 

  10. S.N. Bai, T.Y. Tseng, Thin Solid Films 515, 872 (2006)

    Article  ADS  Google Scholar 

  11. M. Haruta, Catal. Today 36, 153 (1997)

    Article  Google Scholar 

  12. S. Hashmi, G. Hutchings, Angew. Chem. Int. Ed. 45, 7896 (2006)

    Article  Google Scholar 

  13. V. Dhas, S. Muduli, W. Lee, S. Han, S. Ogale, Appl. Phys. Lett. 93, 243108 (2008)

    Article  ADS  Google Scholar 

  14. M. Ahmad, S. Yingying, A. Nisar, H. Sun, W. Shen, M. Weie, J. Zhu, J. Mater. Chem. 21, 7723 (2011)

    Article  Google Scholar 

  15. S. Barcikowski, G. Compagnini, Phys. Chem. Chem. Phys. 9, 3022 (2013)

    Article  Google Scholar 

  16. P. Wagener, A. Schwenke, S. Barcikowski, Langmuir 28, 6132 (2012)

    Article  Google Scholar 

  17. A. Fojtik, A. Henglein, Ber. Bunsenges. Phys. Chem. 97, 252 (1993)

    Article  Google Scholar 

  18. S. Barcikowski, F. Devesa, K. Moldenhauer, J. Nanoparticle Res. 11, 1883 (2009)

    Article  Google Scholar 

  19. C. Rehbock, V. Merk, L. Gamrad, R. Streubel, S. Barcikowski, Phys. Chem. Chem. Phys. 15, 3057 (2013)

    Article  Google Scholar 

  20. P. Nachev, D. Zand, V. Coger, P. Wagener, K. Reimers, P. Vogt, S. Barcikowski, A. Pich, J. Laser Appl. 24, 1 (2012)

    Article  Google Scholar 

  21. P. Wagener, A. Schwenke, B. Chichkov, S. Barcikowski, J. Phys. Chem. C 114, 7618 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Jurij Jakobi for TEM measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephan Barcikowski.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 934 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lau, M., Niemann, R.G., Bartsch, M. et al. Near-field-enhanced, off-resonant laser sintering of semiconductor particles for additive manufacturing of dispersed Au–ZnO-micro/nano hybrid structures. Appl. Phys. A 114, 1023–1030 (2014). https://doi.org/10.1007/s00339-014-8270-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8270-1

Keywords

Navigation