Skip to main content
Log in

Optoelectronics properties enhancement in gold–titanium core–shell nanoparticles for UV absorption

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

Core–shell nanoparticles, comprising gold nanoparticles (AuNPs) and titanium oxide nanoparticles (TiO2–NPs), were synthesized using pulsed laser ablation. This study examined the characteristics of these nanoparticles at three different composition ratios: 25% Au–75% TiO2, 50% Au–50% TiO2, and 75% Au–25% TiO2. We explored the resulting nanocomposite’s ultraviolet (UV) absorption and transmittance, analyzing the results through transmission electron microscopy (TEM) and spectroscopic techniques. The characteristics of the synthesized core–shell NPs exhibited significant variation depending on the ratios of Au and Ti examined. Notably, we observed an absorption peak at 530 nm. Interestingly, core–shell NPs with a higher concentration of Au displayed increased UV absorption, indicating enhanced UV absorption characteristics. TEM imaging unveiled the morphology of the synthesized core–shell NPs. The adjustment in the ratio of the original NPs to introduce core–shell NPs contributed to the synthesis of more efficient nanoparticles. These findings have potential implications for developing innovative materials with improved UV absorption capabilities, particularly in biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. N. Elahi, M. Kamali, M.H. Baghersad, Recent biomedical applications of gold nanoparticles: a review. Talanta 184, 537–556 (2018). https://doi.org/10.1016/j.talanta.2018.02.088

    Article  Google Scholar 

  2. N. Joudeh, D. Linke, Nanoparticle classification, physicochemical properties, characterization, and applications: a comprehensive review for biologists. J. Nanobiotechnol. 20, 262 (2022). https://doi.org/10.1186/s12951-022-01477-8

    Article  Google Scholar 

  3. I. Khan, K. Saeed, I. Khan, Nanoparticles: properties, applications and toxicities. Arab. J. Chem. 12, 908–931 (2019). https://doi.org/10.1016/j.arabjc.2017.05.011

    Article  Google Scholar 

  4. Y. Khan, H. Sadia, S.Z. Ali Shah, M.N. Khan, A.A. Shah, N. Ullah, M.F. Ullah, H. Bibi, O.T. Bafakeeh, N.B. Khedher, Classification, synthetic, and characterization approaches to nanoparticles, and their applications in various fields of nanotechnology: a review. Catalysts 12, 1386 (2022). https://doi.org/10.3390/catal12111386

    Article  Google Scholar 

  5. X. Hu, Y. Zhang, T. Ding, J. Liu, H. Zhao, Multifunctional gold nanoparticles: a novel nanomaterial for various medical applications and biological activities. Front. Bioeng. Biotechnol. 8, 990 (2020). https://doi.org/10.3389/fbioe.2020.00990

    Article  Google Scholar 

  6. J. Milan, K. Niemczyk, M. Kus-Liśkiewicz, Treasure on the Earth—gold nanoparticles and their biomedical applications. Materials 15, 3355 (2022). https://doi.org/10.3390/ma15093355

    Article  ADS  Google Scholar 

  7. V. Ramalingam, Multifunctionality of gold nanoparticles: plausible and convincing properties. Adv. Coll. Interface. Sci. 271, 101989 (2019). https://doi.org/10.1016/j.cis.2019.101989

    Article  Google Scholar 

  8. R. Ghosh Chaudhuri, S. Paria, Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications. Chem. Rev. 112, 2373–2433 (2012). https://doi.org/10.1021/cr100449n

    Article  Google Scholar 

  9. M. Focarete, A. Tampieri, Core-Shell Nanostructures for Drug Delivery and Theranostics: Challenges Strategies and Prospects for Novel Carrier Systems (Woodhead Publishing, 2018)

    Google Scholar 

  10. A. Sinharoy, P. Uddandarao, Zero-Valent Nanomaterials for Wastewater Treatment, in Advanced Application of Nanotechnology to Industrial Wastewater. (Springer, 2023), pp.53–73

    Chapter  Google Scholar 

  11. N. Baig, I. Kammakakam, W. Falath, Nanomaterials: a review of synthesis methods, properties, recent progress, and challenges. Mater. Adv. 2, 1821–1871 (2021). https://doi.org/10.1039/D0MA00807A

    Article  Google Scholar 

  12. S. Khan, M.K. Hossain, Classification and Properties of Nanoparticles, in Nanoparticle-Based Polymer Composites. (Elsevier, 2022), pp.15–54

    Chapter  Google Scholar 

  13. L.I. Hussein, A.H. Abdaleem, M.S. Darwish, M.A. Elsawy, M.H. Mostafa, Chitosan/TiO2 nanocomposites: effect of microwave heating and solution mixing techniques on physical properties. Egypt. J. Chem. 63, 449–460 (2020). https://doi.org/10.21608/EJCHEM.2020.20908.2245

    Article  Google Scholar 

  14. F. Yurt, K. Ocakoglu, M. Ince, S.G. Colak, O. Er, H.M. Soylu, C. Gunduz, C. Biray Avci, C. Caliskan Kurt, Photodynamic therapy and nuclear imaging activities of zinc phthalocyanine-integrated TiO2 nanoparticles in breast and cervical tumors. Chem. Biol. Drug Des. 91, 789–796 (2018). https://doi.org/10.1111/cbdd.13144

    Article  Google Scholar 

  15. N.N. Vlasova, O.V. Markitan, Surface complexation modeling of biomolecule adsorptions onto Titania. Colloids Interfaces 3, 28 (2019). https://doi.org/10.3390/colloids3010028

    Article  Google Scholar 

  16. L. Zhang, X. Liao, A. Fok, C. Ning, P. Ng, Y. Wang, Effect of crystalline phase changes in titania (TiO2) nanotube coatings on platelet adhesion and activation. Mater. Sci. Eng. C 82, 91–101 (2018). https://doi.org/10.1016/j.msec.2017.08.024

    Article  Google Scholar 

  17. A. Sułek, B. Pucelik, M. Kobielusz, P. Łabuz, G. Dubin, J.M. Dąbrowski, Surface modification of nanocrystalline TiO2 materials with sulfonated porphyrins for visible light antimicrobial therapy. Catalysts 9, 821 (2019). https://doi.org/10.3390/catal9100821

    Article  Google Scholar 

  18. M. Ha, J.-H. Kim, M. You, Q. Li, C. Fan, J.-M. Nam, Multicomponent plasmonic nanoparticles: from heterostructured nanoparticles to colloidal composite nanostructures. Chem. Rev. 119, 12208–12278 (2019). https://doi.org/10.1021/acs.chemrev.9b00234

    Article  Google Scholar 

  19. M.J. Sailor, J.H. Park, Hybrid nanoparticles for detection and treatment of cancer. Adv. Mater. 24, 3779–3802 (2012). https://doi.org/10.1002/adma.201200653

    Article  Google Scholar 

  20. W. Park, H. Shin, B. Choi, W.-K. Rhim, K. Na, D.K. Han, Advanced hybrid nanomaterials for biomedical applications. Prog. Mater. Sci. 114, 100686 (2020). https://doi.org/10.1016/j.pmatsci.2020.100686

    Article  Google Scholar 

  21. V.P. Ananikov, Organic–inorganic hybrid nanomaterials. Nanomaterials 9, 1197 (2019). https://doi.org/10.3390/nano9091197

    Article  Google Scholar 

  22. D. Ding, K. Liu, S. He, C. Gao, Y. Yin, Ligand-exchange assisted formation of Au/TiO2 Schottky contact for visible-light photocatalysis. Nano Lett. 14, 6731–6736 (2014). https://doi.org/10.1021/nl503585m

    Article  ADS  Google Scholar 

  23. M. Miljevic, B. Geiseler, T. Bergfeldt, P. Bockstaller, L. Fruk, Enhanced photocatalytic activity of Au/TiO2 nanocomposite prepared using bifunctional bridging linker. Adv. Funct. Mater. 24, 907–915 (2014). https://doi.org/10.1002/adfm.201301484

    Article  Google Scholar 

  24. N. Kamely, M. Ujihara, Confeito-like Au/TiO2 nanocomposite: synthesis and plasmon-induced photocatalysis. J. Nanoparticle Res. 20, 1–10 (2018). https://doi.org/10.1007/s11051-018-4276-5

    Article  Google Scholar 

  25. P. Martins, S. Kappert, H. Le Nga, V. Sebastian, K. Kühn, M. Alves, L. Pereira, G. Cuniberti, M. Melle-Franco, S. Lanceros-Méndez, Enhanced photocatalytic activity of Au/TiO2 nanoparticles against ciprofloxacin. Catalysts 10, 234 (2020). https://doi.org/10.3390/catal10020234

    Article  Google Scholar 

  26. C.B. Anucha, I. Altin, E. Bacaksiz, V.N. Stathopoulos, Titanium dioxide (TiO2)-based photocatalyst materials activity enhancement for contaminants of emerging concern (CECs) degradation: in the light of modification strategies. Chem. Eng. J. Adv. 10, 100262 (2022). https://doi.org/10.1016/j.ceja.2022.100262

    Article  Google Scholar 

  27. V. Harish, M.M. Ansari, D. Tewari, M. Gaur, A.B. Yadav, M.-L. García-Betancourt, F.M. Abdel-Haleem, M. Bechelany, A. Barhoum, Nanoparticle and nanostructure synthesis and controlled growth methods. Nanomaterials 12, 3226 (2022). https://doi.org/10.3390/nano12183226

    Article  Google Scholar 

  28. C.A. Charitidis, P. Georgiou, M.A. Koklioti, A.-F. Trompeta, V. Markakis, Manufacturing nanomaterials: from research to industry. Manuf. Rev. 1, 11 (2014). https://doi.org/10.1051/mfreview/2014009

    Article  Google Scholar 

  29. W.K. Mahmood, R.K. Ibrahim, A.N. Naje, Surface plasmon resonance study of Ag nanoparticles colloidal. Iraqi J. Sci. 58, 2090–2097 (2017). https://doi.org/10.24996/ijs.2017.58.4B.12

    Article  Google Scholar 

  30. A.A. Saeed, M.N. Abbas, W.F. El-Hawary, Y.M. Issa, B. Singh, A core-shell Au@ TiO2 and multi-walled carbon nanotube-based sensor for the electroanalytical determination of H2O2 in human blood serum and saliva. Biosensors 12, 778 (2022). https://doi.org/10.3390/bios12100778

    Article  Google Scholar 

  31. S. Moniri, M.R. Hantehzadeh, M. Ghoranneviss, M.A. Asadabad, Study of the optical and structural properties of Pt nanoparticles prepared by laser ablation as a function of the applied electric field. Appl. Phys. A 123, 1–11 (2017). https://doi.org/10.1007/s00339-017-1311-9

    Article  Google Scholar 

  32. A. Balachandran, S.P. Sreenilayam, K. Madanan, S. Thomas, D. Brabazon, Nanoparticle production via laser ablation synthesis in solution method and printed electronic application-A brief review. Res. Eng. (2022). https://doi.org/10.1016/j.rineng.2022.100646

    Article  Google Scholar 

  33. R. Ibrahim, S. Ahmed, A. Naje, A. Suhail, Synthesis of silver nanoparticles by electrochemical method. J. Appl. Res. 3, 2249–2555 (2013)

    Google Scholar 

  34. P. Wang, L. Zhang, Z. Zhang, S. Wang, C. Yao, Influence of parameters on photodynamic therapy of Au@ TiO2–HMME core-shell nanostructures. Nanomaterials 12, 1358 (2022). https://doi.org/10.3390/nano12081358

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amal I. Mahmood.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Resen, D.A., Mahmood, A.I., Fakhri, M.A. et al. Optoelectronics properties enhancement in gold–titanium core–shell nanoparticles for UV absorption. J Opt (2023). https://doi.org/10.1007/s12596-023-01414-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12596-023-01414-4

Keywords

Navigation