Skip to main content
Log in

Modeling short-pulse laser excitation of dielectric materials

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

A theoretical description of ultrashort-pulse laser excitation of dielectric materials based on strong-field excitation in the Keldysh picture combined with a multiple-rate-equation model for the electronic excitation including collisional processes is presented. The model includes light attenuation in a self-consistent manner and changing optical properties described in a Drude picture. The model can be used to calculate the electronic excitation as a function of time and depth, and from these quantities the time-dependent optical parameters as well as the ablation depth can be derived. The simulations provide insight into the excitation and propagation dynamics of short-pulse excitation and show that at increasing fluence the excitation becomes localized near the material surface and gives rise to strong modifications of the optical properties of the material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. Note that we are here deriving the expressions in terms of the intensity, while in [4] a photon-density expression was used. The expressions in terms of intensity are slightly more intuitive and make some of the numerical-modeling steps simpler.

References

  1. P. Balling, J. Schou, Rep. Prog. Phys. 76, 036502 (2013)

    Article  ADS  Google Scholar 

  2. B. Rethfeld, Phys. Rev. Lett. 92, 187401 (2004)

    Article  ADS  Google Scholar 

  3. A. Kaiser, B. Rethfeld, M. Vicanek, G. Simon, Phys. Rev. B 61, 11437 (2000)

    Article  ADS  Google Scholar 

  4. B.H. Christensen, P. Balling, Phys. Rev. B 79, 155424 (2009)

    Article  ADS  Google Scholar 

  5. L.V. Keldysh, Sov. Phys. JETP 20, 1307 (1965)

    MathSciNet  Google Scholar 

  6. P. Martin, S. Guizard, P. Daguzan, G. Petite, P. D’Oliveira, P. Meynadier, M. Perdrix, Phys. Rev. B 55, 5799 (1997)

    Article  ADS  Google Scholar 

  7. B.K. Ridley, Quantum Processes in Semiconductors (Clarendon, Oxford, 1982)

  8. S. Guizard, A. Semerok, J. Gaudin, A. Hashida, P. Martin, F. Quéré, Appl. Surf. Sci. 186, 364 (2002)

    Article  ADS  Google Scholar 

  9. M.N. Christensen, J. Byskov-Nielsen, B.H. Christensen, P. Balling, Appl. Phys. A 101, 279 (2010)

    Article  ADS  Google Scholar 

  10. K.J. Wædegaard, M. Frislev, P. Balling, Appl. Phys. A 110, 601 (2013)

    Article  Google Scholar 

  11. K.J. Wædegaard, D.B. Sandkamm, A. Mouskeftaras, S. Guizard, P. Balling, submitted to Europhysics Letters (2013)

  12. A. Rämer, O. Osmani, B. Rethfeld, submitted to Appl. Phys. A (2013). http://arxiv.org/abs/1401.5663

  13. S.S. Mao, F. Quéré, S. Guizard, X. Mao, R. Russo, G. Petite, P. Martin, Appl. Phys. A 79, 1695 (2004)

    Article  Google Scholar 

  14. C. Sarpe, J. Koehler, T. Winkler, M. Wollenhaupt, T. Baumert . New J. Phys. 14, 075021 (2012)

    Article  ADS  Google Scholar 

  15. D. Puerto, J. Siegel, W. Gawelda, M. Galvan-Sosa, L. Ehrentraut, J. Bonse, J. Solis, J. Opt. Soc. Am. B 27, 1065 (2010)

    Article  ADS  Google Scholar 

  16. O. Utéza, N. Sanner, B. Chimier, A. Brocas, N. Varkentina, M. Sentis, P. Lassonde, F. Légaré, J.C. Kieffer, Appl. Phys. A 105, 131 (2011)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Balling.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wædegaard, K., Sandkamm, D.B., Haahr-Lillevang, L. et al. Modeling short-pulse laser excitation of dielectric materials. Appl. Phys. A 117, 7–12 (2014). https://doi.org/10.1007/s00339-014-8231-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8231-8

Keywords

Navigation