Skip to main content
Log in

Femtosecond laser-induced periodic surface structures on steel and titanium alloy for tribological applications

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Laser-induced periodic surface structures (LIPSS, ripples) were generated on stainless steel (100Cr6) and titanium alloy (Ti6Al4V) surfaces upon irradiation with multiple femtosecond laser pulses (pulse duration 30 fs, central wavelength 790 nm). The experimental conditions (laser fluence, spatial spot overlap) were optimized in a sample-scanning geometry for the processing of large surface areas (5 × 5 mm2) covered homogeneously by the nanostructures. The irradiated surface regions were subjected to white light interference microscopy and scanning electron microscopy revealing spatial periods around 600 nm. The tribological performance of the nanostructured surface was characterized by reciprocal sliding against a ball of hardened steel in paraffin oil and in commercial engine oil as lubricants, followed by subsequent inspection of the wear tracks. For specific conditions, on the titanium alloy a significant reduction of the friction coefficient by a factor of more than two was observed on the laser-irradiated (LIPSS-covered) surface when compared to the non-irradiated one, indicating the potential benefit of laser surface structuring for tribological applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J. Bonse, J. Krüger, S. Höhm, A. Rosenfeld, J. Laser Appl. 24, 042006 (2012)

    Article  ADS  Google Scholar 

  2. A. Borowiec, H.K. Haugen, Appl. Phys. Lett. 82, 4462 (2003)

    Article  ADS  Google Scholar 

  3. J. Bonse, M. Munz, H. Sturm, J. Appl. Phys. 97, 013538 (2005)

    Article  ADS  Google Scholar 

  4. A.Y. Vorobyev, V.S. Makin, C. Guo, J. Appl. Phys. 101, 034903 (2007)

    Article  ADS  Google Scholar 

  5. J. Bonse, A. Rosenfeld, J. Krüger, J. Appl. Phys. 106, 104910 (2009)

    Article  ADS  Google Scholar 

  6. J.E. Sipe, J.F. Young, J.S. Preston, H.M. van Driel, Phys. Rev. B 27, 1141 (1983)

    Article  ADS  Google Scholar 

  7. M. Huang, F. Zhao, Y. Cheng, N. Xu, Z. Xu, ACS Nano 3, 4062 (2009)

    Article  Google Scholar 

  8. S. Sakabe, M. Hashida, S. Tokita, K. Okamura, Phys. Rev. B 79, 033109 (2009)

    Article  ADS  Google Scholar 

  9. J. Reif, O. Varlamova, S. Varlamov, M. Bestehorn, Appl. Phys. A 104, 969 (2011)

    Article  ADS  Google Scholar 

  10. T.J.-Y. Derrien, R. Torres, T. Sarnet, M. Sentis, T.E. Itina, Appl. Surf. Sci. 258, 9487 (2012)

    Article  ADS  Google Scholar 

  11. M.N.W. Groenendijk, J. Meijer, CIRP Ann. 55, 183 (2006)

    Article  Google Scholar 

  12. L. Qi, K. Nishii, Y. Namba, Opt. Lett. 34, 1846 (2009)

    Article  ADS  Google Scholar 

  13. B. Dusser, Z. Sagan, H. Soder, N. Faure, J.P. Colombier, M. Jourlin, E. Audouard, Opt. Express 18, 2913 (2010)

    Article  ADS  Google Scholar 

  14. S. Hou, Y. Huo, P. Xiong, Y. Zhang, S. Zhang, T. Jia, Z. Sun, J. Qiu, Z. Xu, J. Phys. D: Appl. Phys. 44, 505401 (2011)

    Article  ADS  Google Scholar 

  15. J. Bonse, S. Höhm, A. Rosenfeld, J. Krüger, Appl. Phys. A 110, 547 (2013)

    Article  ADS  Google Scholar 

  16. A. Mizuno, T. Honda, J. Kiuchi, Y. Iwai, N. Yasumaru, K. Miyazaki, Tribol. Online 1, 44 (2006)

    Article  Google Scholar 

  17. N. Yasumaru, Kenzo Miyazaki, J. Kiuchi, Appl. Surf. Sci. 254, 2364 (2008)

    Article  ADS  Google Scholar 

  18. J. Eichstädt, G.R.B.E. Römer, A.J. Huis in’t Veld, Phys. Proc. 12, 7 (2011)

    Article  ADS  Google Scholar 

  19. C.-Y. Chen, C.-J. Chung, B.-H. Wu, W.-L. Li, C.-W. Chien, P.-H. Wu, C.-W. Cheng, Appl. Phys. A 107, 345 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank S. Benemann (BAM 6.8) for the SEM characterizations, M. Weise (BAM 6.7) for the WLIM measurements, and S. Binkowski and M. Scheibe (both BAM 6.3) for polishing the titanium samples. This work was supported by the German Science Foundation (DFG) under Grants No. RO 2074/7-2 and KR 3638/1-2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Bonse.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bonse, J., Koter, R., Hartelt, M. et al. Femtosecond laser-induced periodic surface structures on steel and titanium alloy for tribological applications. Appl. Phys. A 117, 103–110 (2014). https://doi.org/10.1007/s00339-014-8229-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8229-2

Keywords

Navigation