Skip to main content
Log in

A rapid synthesis/growth process producing massive ZnO nanowires for humidity and gas sensing

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We report a rapid and simple process to massively synthesize/grow ZnO nanowires capable of manufacturing massive humidity/gas sensors. The process utilizing a chemical solution deposition with an annealing process (heating in vacuum without gas) is capable of producing ZnO nanowires within an hour. Through depositing the ZnO nanowires on the top of a Pt-interdigitated-electrode/SiO2/Si-Wafer, a humidity/gas-hybrid sensor is fabricated. The humidity sensitivity (i.e., ratio of the electrical resistance of the sensor at 11–95 % relative humidity level) is approximately 104. The response and recovery time with the humidity changing from 11 to 95 % directly and reversely is 6 and 10 s, respectively. The gas sensitivity (i.e., ratio of electrical resistance of the sensor under the air to vaporized ethanol) is increased from 2 to 56 when the concentration of the ethanol is increased from 40 to 600 ppm. Both the response and recovery times are less than 15 s for the gas sensor. These results show the sensor utilizing the nanowires exhibits excellent humidity and gas sensing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. N. Yamazoe, Sens. Actuators B 5, 7 (1991)

    Google Scholar 

  2. A. Tételin, C. Pellet, C. Laville, G. N’Kaoua, Sens. Actuators B 91, 211 (2003)

    Google Scholar 

  3. S.P. Chang, S.J. Chang, C.Y. Lua, M.J. Li, C.L. Hsu, Y.Z. Chiou, T.J. Hsueh, I.C. Chen, Superlattices Microstruct. 47, 772 (2010)

    ADS  Google Scholar 

  4. X.Q. Fu, C. Wang, H.C. Yu, Y.G. Wang, T.H. Wang, Nanotechnology 18, 145503 (2007)

    ADS  Google Scholar 

  5. L. Francioso, A.M. Taurino, A. Forleo, P. Siciliano, Sens. Actuators B 130, 70 (2008)

    Google Scholar 

  6. C. Li, D.H. Zhang, X.L. Liu, S. Han, T. Tang, J. Han, C.W. Zhou, Appl. Phys. Lett. 82, 1613 (2003)

    ADS  Google Scholar 

  7. G. Wang, Q. Wang, W. Lu, J. Li, J. Phys. Chem. B 110, 22029 (2006)

    Google Scholar 

  8. D. Li, J. Hu, R. Wu, J.G. Lu, Nanotechnology 21, 485502 (2010)

    Google Scholar 

  9. Y. Chen, D.M. Bagnall, H. Koh, K. Park, K. Hiraga, Z. Zhu, T. Yao, J. Appl. Phys. 84, 3912 (1998)

    ADS  Google Scholar 

  10. L.S. Mende, J.L. MacManus-Driscoll, Mater. Today 10, 40 (2007)

    Google Scholar 

  11. S. Park, S. An, C. Jin, C. Lee, Appl. Phys. A 108, 35 (2012)

    ADS  Google Scholar 

  12. K.K. Kim, J.H. Song, H.J. Jung, W.K. Choi, S.J. Park, J.H. Song, J. Appl. Phys. 87, 3573 (2000)

    ADS  Google Scholar 

  13. D. Zhang, S. Chava, C. Berven, S.K. Lee, R. Devitt, V. Katkanant, Appl. Phys. A 100, 145 (2010)

    ADS  Google Scholar 

  14. B.S. Kang, Y.W. Heo, L.C. Tien, D.P. Norton, F. Ren, B.P. Gila, S.J. Pearton, Appl. Phys. A 80, 1029 (2005)

    ADS  Google Scholar 

  15. S.E. Ahn, H.J. Ji, K. Kim, G.T. Kim, C.H. Bae, S.M. Park, Y.K. Kim, J.S. Ha, Appl. Phys. Lett. 90, 153106 (2007)

    ADS  Google Scholar 

  16. C.K. Xu, M. Kim, S.Y. Chung, D.E. Kim, Solid State Commun. 132, 837 (2004)

    ADS  Google Scholar 

  17. E.W. Petersen, E.M. Likovich, K.J. Russell, V. Narayanamurti, Nanotechnology 20, 405603 (2009)

    Google Scholar 

  18. N.F. Hsu, M. Chang, Mater. Chem. Phys. 135, 112 (2012)

    Google Scholar 

  19. L.C. Tien, S.J. Pearton, D.P. Norton, F. Ren, J. Mater. Sci. 43, 6925 (2008)

    ADS  Google Scholar 

  20. L. Wu, Y. Wu, J. Mater. Sci. 42, 406 (2007)

    ADS  Google Scholar 

  21. G. Amin, M.O. Sandberg, A. Zainelabdin, S. Zaman, O. Nur, M. Willander, J. Mater. Sci. 47, 4726 (2012)

    ADS  Google Scholar 

  22. M.R. Khanlary, V. Vahedi, A. Reyhani, Molecules 17, 5021 (2012)

    Google Scholar 

  23. D. Somvanshi, S. Jit, Adv. Mater. Res. 585, 124 (2012)

    Google Scholar 

  24. L. Li, K. Yu, J. Wu, Y. Wang, Z. Zhu, Cryst. Res. Technol. 45, 539 (2010)

    Google Scholar 

  25. T.J. Hsueh, Y.W. Chen, S.J. Chang, S.F. Wang, C.L. Hsu, Y.R. Lin, T.S. Lin, I.C. Chen, Sens. Actuators B 125, 498 (2007)

    Google Scholar 

  26. C.M. Chang, M.H. Hon, I.C. Leu, Sens. Actuators B 151, 15 (2010)

    Google Scholar 

  27. J. Zhang, N. Li, Oxid. Met. 63, 353 (2005)

    Google Scholar 

  28. M. Ohring, The Materials Science of Thin Films, 2nd edn. (Academic Press, San Diego, 2002)

    Google Scholar 

  29. Q. Qi, T. Zhang, Q. Yu, R. Wang, Y. Zeng, L. Liu, H. Yang, Sens. Actuators B 133, 638 (2008)

    Google Scholar 

  30. T.K. Chung, G.P. Carman, K.P. Mohanchandra, Appl. Phys. Lett. 92, 112509 (2008)

    ADS  Google Scholar 

  31. T.K. Chung, S. Keller, G.P. Carman, Appl. Phys. Lett. 94, 132501 (2009)

    ADS  Google Scholar 

  32. P. Feng, Q. Wan, T.H. Wang, Appl. Phys. Lett. 87, 213111 (2005)

    ADS  Google Scholar 

  33. J.Q. Xu, Y.P. Chen, Y.D. Li, J.N. Shen, J. Mater. Sci. 40, 2919 (2005)

    Google Scholar 

  34. Y. Lv, L. Guo, H. Xu, X. Chu, Physica E 36, 102 (2007)

    ADS  Google Scholar 

  35. S. Santra, P.K. Guha, S.Z. Ali, P. Hiralal, H.E. Unalan, J.A. Covington, G.A.J. Amaratunga, W.I. Milne, J.W. Gardner, F. Udrea, Sens. Actuators B 146, 559 (2010)

    Google Scholar 

  36. J. Yi, J.M. Lee, W.I. Park, Sens. Actuators B 155, 264 (2011)

    Google Scholar 

  37. J. Lv, W. Gong, K. Huang, J. Zhu, F. Meng, X. Song, Z. Sun, Superlattices Microstruct. 50, 98 (2011)

    ADS  Google Scholar 

  38. S. Ma, R. Li, C. Lv, W. Xu, X. Gou, J. Hazardous Mater. 192, 730 (2011)

    Google Scholar 

  39. S.P. Chang, S.J. Chang, C.Y. Lu, M.J. Li, C.L. Hsu, Y.Z. Chiou, T.J. Hsueh, I.C. Chen, Superlattices Microstruct. 47, 772 (2010)

    ADS  Google Scholar 

  40. N. Ashkenov, B.N. Mbenkum, C. Bundesmann, V. Riede, M. Lorenz, D. Spemann, E.M. Kaidashev, A. Kasic, M. Schubert, M. Grundmann, G. Wagner, H. Neumann, V. Darakchieva, H. Arwin, B. Monemar, J. Appl. Phys. 93, 126 (2003)

    ADS  Google Scholar 

  41. C.A. Arguello, D.L. Rousseau, S.P.S. Porto, Phys. Rev. 181, 1351 (1969)

    ADS  Google Scholar 

  42. J.J. Wu, S.C. Liu, J. Phys. Chem. B 106, 9546 (2002)

    Google Scholar 

  43. H.C. Hsu, H.M. Cheng, C.Y. Wu, H.S. Huang, Y.C. Lee, W.F. Hsieh, Nanotechnology 17, 1404 (2006)

    ADS  Google Scholar 

  44. X. Zhang, L. Wang, G. Zhou, Rev. Adv. Mater. Sci. 10, 69 (2005)

    Google Scholar 

  45. K. Vanheusden, W.L. Warren, C.H. Seager, D.R. Tallant, J.A. Voigt, J. Appl. Phys. 79, 7983 (1996)

    ADS  Google Scholar 

  46. M.H. Huang, S. Mao, H. Feik, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, P. Yang, Science 292, 1897 (2001)

    ADS  Google Scholar 

  47. C.H. Hung, W.T. Whang, Mater. Chem. Phys. 82, 705 (2003)

    Google Scholar 

  48. C. Xu, M. Kim, S. Chung, D.E. Kim, Solid State Commun. 132, 837 (2004)

    ADS  Google Scholar 

  49. B.M. Kulwicki, J. Am. Ceram. Soc. 74, 697 (1991)

    Google Scholar 

  50. F.M. Ernsberger, J. Am. Ceram. Soc. 66, 747 (1983)

    Google Scholar 

  51. W. Wang, Z. Li, L. Liu, H. Zhang, W. Zheng, Y. Wang, H. Huang, Z. Wang, C. Wang, Sens. Actuators B 141, 404 (2009)

    Google Scholar 

  52. Z. Zhang, C. Hu, Y. Xiong, R. Yang, Z.L. Wang, Nanotechnology 18, 465504 (2007)

    ADS  Google Scholar 

  53. J.X. Wang, X.W. Sun, Y. Yang, H. Huang, Y.C. Lee, O.K. Tan, L. Vayssieres, Nanotechnology 17, 4995 (2006)

    ADS  Google Scholar 

  54. N.V. Hieu, N.D. Chien, Phys. B 403, 50 (2008)

    ADS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the National Science Council of the Republic of China, Taiwan, for financially supporting this research under Contract No. NSC 101-2218-E-539-001 and NSC 102-2623-E-539-001-ET. The authors also thank Mr. Chieh-Min Wang in National Chiao Tung University, Taiwan for the electrode preparation and TEM/HR-TEM characterization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nai-Feng Hsu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hsu, NF., Chung, TK. A rapid synthesis/growth process producing massive ZnO nanowires for humidity and gas sensing. Appl. Phys. A 116, 1261–1269 (2014). https://doi.org/10.1007/s00339-013-8217-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-013-8217-y

Keywords

Navigation