Skip to main content
Log in

Optical and spectral tunability of multilayer spherical and cylindrical nanoshells

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

This theoretical work presents a comparative study of the optical properties and spectral tunability of hybrid multilayer spherical and cylindrical nanoshells based on the quasi-static approximation of classical electrodynamics. The interband transitions have been considered using the Drude–Lorentz model for the complex dielectric function of metallic layers because the optical properties of metals arise from both the optical excitation of interband transitions and the free-electron response. A general formula for N-ayer concentric nanoshells is arranged, and numerical calculations are performed for the four-layer nanoshells as an example. We have analyzed in detail different configurations of nanoshells such as dielectric-metal-dielectric-metal with dielectric core, metal-dielectric-metal-dielectric with metal core and semiconductor-metal-dielectric-metal with semiconductor core because composition of nanoshells have dramatic influence on their optical properties. The absorbance spectrum behavior of the shell thicknesses, surrounding medium, shape and composition of each layer of the nanoshell is numerically investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. S. Kalele, S.W. Gosavi, J. Urban, S.K. Kulkarni, Curr. Sci. 91, 1038 (2006)

    Google Scholar 

  2. B.J. Jankiewicz, D. Jamiola, J. Choma, M. Jaroniec, Adv. Colloid Interface Sci. 170, 28 (2012)

    Article  Google Scholar 

  3. D. Gülen, J. Phys. Chem. B. 117, 11220 (2013)

    Article  Google Scholar 

  4. E. Prodan, P. Nordlander, Nano Lett. 3, 543 (2003)

    Article  ADS  Google Scholar 

  5. E. Prodan, C. Radloff, N.J. Halas, P. Nordlander, Science 302, 419 (2003)

    Article  ADS  Google Scholar 

  6. C.L. Nehl, N.K. Grady, G.P. Goodrich, F. Tam, N.J. Halas, J.H. Hafner, Nano Lett. 4, 2355 (2004)

    Article  ADS  Google Scholar 

  7. I. Mishchenko, D. Travis, A. Lacis, Scattering, Absorption, Emission of light by small particles (Cambridge University, United Kingdom, 2004)

  8. L.R. Hirsch, A.M. Gobin, A.R. Lowery, F. Tam, R.A. Drezek, N.J. Halas, L. West J, Ann. Biomed. Eng. 34, 15 (2006)

    Article  Google Scholar 

  9. S.J. Oldenburg, S.L. Westcott, R.D. Averitt, N.J. Halas, J. Chem. Phys. 111, 4729 (1999)

    Article  ADS  Google Scholar 

  10. H.S. Zhou, I. Honma, H. Komiyama, J.W. Haus, Phys. Rev. B. 50, 12052 (1994)

    Article  ADS  Google Scholar 

  11. R.D. Averitt, D. Sarkar, N.J. Halas, Phys. Rev. Lett. 78, 4217 (1997)

    Article  ADS  Google Scholar 

  12. C. Radloff, N.J. Halas, Nano Lett. 4, 1323 (2004)

    Article  ADS  Google Scholar 

  13. R. Bardhan, N.K. Grady, T. Ali, N.J. Halas, Acs Nano. 4, 6169 (2010)

    Article  Google Scholar 

  14. L. Zhang, D.A. Blom, H. Wang, Chem. Mater. 23, 4587 (2011)

    Article  Google Scholar 

  15. R.D. Averitt, S.L. Westcott, N.J. Halas, J. Opt. Soc. Am. B. 16, 1824 (1999)

    Article  ADS  Google Scholar 

  16. E. Prodan, A. Lee, P. Nordlander, Chem. Phys. Lett. 360, 325332 (2002)

    Article  Google Scholar 

  17. J. Zhu, Physica E. 27, 296 (2005)

    Article  ADS  Google Scholar 

  18. X.H. Xia, Y. Liu, V. Backman, G.A. Ameer, Nanotechnology 17, 5435 (2006)

    Article  ADS  Google Scholar 

  19. J. Zhu, Mater. Sci. Eng. A. 685, 454 (2007)

    Google Scholar 

  20. Y. Hu, R.C. Fleming, R.A. Drezek, Optics Express. 16, 19579 (2008)

    Article  ADS  Google Scholar 

  21. J. Zhu, Appl. Phys. Lett. 92, 241919(1–3) (2008)

  22. O. Peña, U. Pal, L. Rodríguez-Fernández, A. Crespo-Sosa, J. Opt. Soc. Am. B 25, 1371 (2008)

    Article  ADS  Google Scholar 

  23. O. Peña-Rodríguez, U. Pal, J. Phys. Chem. C 114, 4414 (2010)

    Article  Google Scholar 

  24. H. Khosravi, N. Daneshfar, A. Bahari, Phys. Plasma. 17, 053302 (2010)

    Article  ADS  Google Scholar 

  25. J. Zhu, X.-.C. Deng, Sens. Actuators B. 155, 843 (2011)

    Article  Google Scholar 

  26. J. Zhu, J.-.J. Li, J.-.W. Zhao, Plasmonics. 6, 527 (2011)

    Article  Google Scholar 

  27. C. Liu, B.Q. Li, J. Phys. Chem. C. 115, 5323 (2011)

    Article  Google Scholar 

  28. M. Wang, M. Cao, X. Chen, N. Gu, J. Phys. Chem. C. 115, 20920 (2011)

    Article  Google Scholar 

  29. O. Peña-Rodríguez, U. Pal, Nanoscale Res. Lett. 6, 279 (2011)

    Article  ADS  Google Scholar 

  30. J. Zhu, Y.-.J. Ren, S.-.M. Zhao, Sens. Actuators B. 161, 1129 (2012)

    Article  Google Scholar 

  31. J. Qian, W. Wang, Y. Li, J. Xu, Q. Sun, J. Phys. Chem. C. 116, 10349 (2012)

    Article  Google Scholar 

  32. G. Weng, J. Li, J. Zhao, Phys. E. 44, 2072 (2012)

    Article  Google Scholar 

  33. J. Zhu, J.-J. Li, J.-W. Zhao, Plasmonics. 8, 417 (2013)

    Google Scholar 

  34. J.F. Ho, B. Luk'yanchuk, J.B. Zhang, Appl. Phys. A. 547, 107 (2012)

    Google Scholar 

  35. J. Zhu, J.-.J. Li, J.-.W. Zhao, J. Phys. Chem. C. 117, 584 (2013)

    Article  Google Scholar 

  36. J. Zhu, J.-.J. Li, J.-.W. Zhao, J. Nanopart. Res. 15, 1721 (2013)

    Article  MathSciNet  Google Scholar 

  37. S. Gao, P. Li, F. Li, Appl. Phys. Lett. 102, 123107 (2013)

    Article  ADS  Google Scholar 

  38. J. Zhu, J.-J. Li, J.-W. Zhao, Plasmonics. 8, 1493 (2013)

    Google Scholar 

  39. U. Kreibig, M. Vollmer, Optical properties of metal clusters (Springer, Berlin, 1995)

  40. G.V. Hartland, Annu. Rev. Phys. Chem. 57, 40330 (2006)

    Article  Google Scholar 

  41. A. Erickson, J.W. Tunnell, Gold nanoshells in biomedical applications, in Mixed metal nanomaterials, ed. by C.S.S.R. Kumar, Vol. 3 of Nanomaterials for the Life Sciences (Wiley-VCH, Weinheim, 2009).

  42. A.E. Neeves, M.H. Birnboim, J. Opt. Soc. Am. B. 6, 787 (1989)

    Article  ADS  Google Scholar 

  43. G. Weng, J. Li, J. Zhu, J. Zhao, Colloids Surf. A. Physicochem. Eng. Aspects. 369, 253 (2010)

    Article  Google Scholar 

  44. J.D. Jackson, Classical Electrodynamics (John Wiley and Sons, New York, 1999).

  45. J.Z. Zhang, Optical Properties and Spectroscopy of Nanomaterials (World Scientific Publishing, New Jerse, 2009)

  46. L. Novotny, B. Hecht, Principles of Nano-Optics (Cambridge University Press, Cambridge, 2006)

  47. C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles, (Wiley, New York, 1983)

  48. A.D. Rakic, A.B. Djurisic, J.M. Elazar, M.L. Majewski, Appl. Opt. 37, 52715283 (1998)

    Article  Google Scholar 

  49. T. Pakizeh, J. Phys. Chem. C. 115, 21826 (2011)

    Article  Google Scholar 

  50. J. Požela, K. Požela, A. Šil enas, E. Širmulis, V. Jucien e, Appl. Phys. A. 110, 153 (2013)

    Article  ADS  Google Scholar 

  51. K.S. Srivastava, A. Tandon, Phys. Rev. B. 39, 3858 (1989)

    Article  Google Scholar 

  52. A. Srivastava, K.S. Tandon, Phys. Stat. Sol. B. 155, 127 (1989)

    Google Scholar 

  53. P.K. Jain, K.S. Lee, I.H. El-Sayed, M.A. El-Sayed, J. Phys. Chem. B. 110, 7238 (2006)

    Article  Google Scholar 

  54. F. Tam, C. Moran, N. Halas, J. Phys. Chem. B. 108(45), 17290 (2004)

    Article  Google Scholar 

  55. H. Wang, F. Tam, N.K. Grady, N.J. Halas, J. Phys. Chem. B. 109, 18219 (2005)

    Google Scholar 

  56. K.W. Chiu, J.J. Quinn, Phys. Lett. A. 35, 469 (1971)

    Article  ADS  Google Scholar 

  57. K. Tanabe, J. Phys. Chem. C. 112, 15721 (2008)

    Article  Google Scholar 

  58. S. Schelm, G.B. Smith, J. Phys. Chem. B. 109, 1689 (2005)

    Article  Google Scholar 

  59. R.D. Averitt, S.L. Westcott, N.J. Halas, Phys. Rev. B. 58, R10203 (1998)

    Article  ADS  Google Scholar 

  60. H.P. Paudel, M.N. Leuenberger, Nano Lett. 12, 2690 (2012)

    Article  Google Scholar 

  61. A.K. Kodali, M.V. Schulmerich, R. Palekar, X. Llora, R. Bhargava, Opt. Express. 18, 23302 (2010)

    Article  ADS  Google Scholar 

  62. C. Kumar, Nanomaterials for Biosensors (WILEY-VCH, Weinheim, 2007)

Download references

Acknowledgements

Some of numerical calculations of this work has been performed at the Parallel Computing Laboratory, Department of Physics, University of Razi. We would like to thank head of laboratory, Dr. Mehdi Tabrizi for his excellent cooperation of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nader Daneshfar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Daneshfar, N., Bazyari, K. Optical and spectral tunability of multilayer spherical and cylindrical nanoshells. Appl. Phys. A 116, 611–620 (2014). https://doi.org/10.1007/s00339-013-8188-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-013-8188-z

Keywords

Navigation