Skip to main content
Log in

Thermodynamic analysis of nanoparticle size effect on kinetics in Fischer–Tropsch synthesis by lanthanum promoted iron catalyst

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The kinetic parameters of the Fischer–Tropsch synthesis (FTS) on iron catalyst are analyzed by size-dependent thermodynamic method. A Langmuir–Hinshelwood kinetic equation is considered for evaluation of catalytic activity of lanthanum promoted iron catalyst. A series of unsupported iron catalysts with different particle sizes were prepared via microemulsion method. The experimental results showed that catalyst activity pass from a maximum value by increasing the iron particle size. Also, data presented that iron particle size has considerable effects on adsorption parameters and FTS rates. The ratio of surface tension (σ) to nanoparticle radius (r) is important in FTS reaction on iron catalyst. Finally, the results showed that by increasing of iron particle size from 18 to 45 nm the activation energies of catalysts and heats of adsorption of catalysts as two main parameters of FTS reaction increased from 89 to 114 kJ/mol and from 51 to 71 kJ/mol, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

FTS:

Fischer Tropsch synthesis

rFTS :

Rate of FTS reaction

k:

Rate constant of FTS reaction

b:

Adsorption parameter

r:

Catalyst particle size

PH2 :

Partial pressure of hydrogen

PH2O :

Partial pressure of water

σ:

Surface tension of solid catalyst

Ea :

Activation energy for the overall catalytic process

ΔH:

Adsorption enthalpy

k :

Size independent FTS reaction rate constant

η:

A parameter which is equal to η = 2σVM/RT

b :

Size independent adsorption parameter

χ:

Brønsted–Polanyi parameter, 0 < χ < 1

δ :

Absolute temperature independent surface tension energies

ΔΗ :

Size independent adsorption enthalpy

Ea∞ :

Size independent activation energy

References

  1. B. Davis, Top. Catal. 32, 143–168 (2005)

    Article  Google Scholar 

  2. R. de Deugd, F. Kapteijn, J. Moulijn, Top. Catal. 26, 29–39 (2003)

    Article  Google Scholar 

  3. M.E. Dry, Catal. Today 71, 227–241 (2002)

    Article  Google Scholar 

  4. J. Wang, M.S. Gudiksen, X. Duan, Y. Cui, C.M. Lieber, Science 293, 1455–1457 (2001)

    Article  ADS  Google Scholar 

  5. A.T. Bell, Science 299, 1688–1691 (2003)

    Article  ADS  Google Scholar 

  6. T. Bernhardt, U. Heiz, U. Landman, in Nanocatalysis, ed. by U. Heiz, U. Landman (Springer, Berlin, 2007), pp. 1–191

    Chapter  Google Scholar 

  7. C.Q. Sun, Prog. Solid State Chem. 35, 1–159 (2007)

    Article  Google Scholar 

  8. A.L. Dantas Ramos, P.D.S. Alves, D.A.G. Aranda, M. Schmal, Appl. Catal. A: Gen. 277, 71–81 (2004)

    Article  Google Scholar 

  9. Y. Tai, W. Yamaguchi, K. Tajiri, H. Kageyama, Appl. Catal. A 364, 143–149 (2009)

    Article  Google Scholar 

  10. A. Nakhaei Pour, M.R. Housaindokht, S.F. Tayyari, J. Zarkesh, M.R. Alaei, Mol. Catal. A: Chem 330, 112–120 (2010)

    Article  Google Scholar 

  11. T. Herranz, S. Rojas, F.J. Pérez-Alonso, M. Ojeda, P. Terreros, J.L.G. Fierro, Appl. Catal. A 311, 66–75 (2006)

    Article  Google Scholar 

  12. M. Ojeda, S. Rojas, M. Boutonnet, F.J. Pérez-Alonso, F. Javier García-García, J.L.G. Fierro, Appl. Catal. A 274, 33–41 (2004)

    Article  Google Scholar 

  13. A.N. Pour, S. Taghipoor, M. Shekarriz, S.M.K. Shahri, Y. Zamani, J. Nanosci. Nanotechnol. 9, 4425–4429 (2009)

    Article  Google Scholar 

  14. A. Sarkar, D. Seth, A. Dozier, J. Neathery, H. Hamdeh, B. Davis, Catal. Lett. 117, 1–17 (2007)

    Article  Google Scholar 

  15. G.P. Van Der Laan, A.A.C.M. Beenackers, Catal. Rev. 41, 255–318 (1999)

    Article  Google Scholar 

  16. G.P. van der Laan, A.A.C.M. Beenackers, Appl. Catal. A 193, 39–53 (2000)

    Article  Google Scholar 

  17. A.N. Pour, M.R. Housaindokht, J. Zarkesh, M. Irani, E.G. Babakhan, J. Ind. Eng. Chem. 18, 597–603 (2012)

    Article  Google Scholar 

  18. J. Yang, Y. Liu, J. Chang, Y.-N. Wang, L. Bai, Y–.Y. Xu, H.-W. Xiang, Y.-W. Li, B. Zhong, Ind. Eng. Chem. Res. 42, 5066–5090 (2003)

    Article  Google Scholar 

  19. C.G. Visconti, E. Tronconi, L. Lietti, R. Zennaro, P. Forzatti, Chem. Eng. Sci. 62, 5338–5343 (2007)

    Article  Google Scholar 

  20. D.Y. Murzin, Chem. Eng. Sci. 64, 1046–1052 (2009)

    Article  Google Scholar 

  21. D.Y. Murzin, J. Catal. 276, 85–91 (2010)

    Article  Google Scholar 

  22. D.Y. Murzin, I.L. Simakova, Kinet. Catal. 51, 828–831 (2010)

    Article  Google Scholar 

  23. V.N. Parmon, Dokl. Phys. Chem. 413, 42–48 (2007)

    Article  Google Scholar 

  24. A.N. Pour, M.R. Housaindokht, E.G. Babakhani, M. Irani, S.M.K. Shahri, J. Ind. Eng. Chem. 17, 596–602 (2011)

    Article  Google Scholar 

  25. A.N. Pour, M.R. Housaindokht, E.G. Zarkesh, S.F. Tayyari, J. Ind. Eng. Chem. 16, 1025–1032 (2010)

    Article  Google Scholar 

  26. A.N. Pour, M.R. Housaindokht, S.F. Tayyari, J. Zarkesh, J. Nat. Gas Chem. 19, 441–445 (2010)

    Article  Google Scholar 

  27. B. Sun, Z. Jiang, D. Fang, K. Xu, Y. Pei, S. Yan, M. Qiao, K. Fan, B. Zong, Chem. Cat. Chem. 5, 714–719 (2013)

    Google Scholar 

  28. G. Yu, B. Sun, Y. Pei, S. Xie, S. Yan, M. Qiao, K. Fan, X. Zhang, B. Zong, J. Am. Chem. Soc. 132, 935–937 (2010)

    Article  Google Scholar 

  29. M. Dry, Catal. Lett. 7, 241–251 (1990)

    Article  Google Scholar 

  30. S.A. Eliason, C.H. Bartholomew, Appl. Catal. A 186, 229–243 (1999)

    Article  Google Scholar 

  31. M.E. Dry, Appl. Catal. A 138, 319–344 (1996)

    Article  Google Scholar 

  32. A. Nakhaei Pour, S.M.K. Shahri, H.R. Bozorgzadeh, Y. Zamani, M. Irani, A. Tavasoli, M.A. Marvast, Appl. Catal. A: Gen 348, 201–208 (2008)

    Article  Google Scholar 

  33. A. Nakhaei Pour, S.M.K. Shahri, Y. Zamani, M. Irani, S. Tehrani, J. Nat. Gas Chem. 17, 242–248 (2008)

    Article  Google Scholar 

  34. M.R. Housaindokht, A.N. Pour, Solid State Sci. 14, 622–625 (2012)

    Article  ADS  Google Scholar 

  35. M.R. Housaindokht, A.N. Pour, J. Nat. Gas Chem. 20, 687–692 (2011)

    Article  Google Scholar 

  36. A.N. Pour, M.R. Housaindokht, S.F. Tayyari, J. Zarkesh, J. Nat. Gas Chem. 19, 284–292 (2010)

    Article  Google Scholar 

  37. A.N. Pour, M.R. Housaindokht, S.F. Tayyari, J. Zarkesh, J. Nat. Gas Chem. 19, 333–340 (2010)

    Article  Google Scholar 

  38. D. Murzin, React. Kinet. Catal. Lett. 97, 165–171 (2009)

    Article  Google Scholar 

  39. D.Y. Murzin, J. Mol. Catal. A: Chem. 315, 226–230 (2010)

    Article  Google Scholar 

  40. X. Zhou, W. Xu, G. Liu, D. Panda, P. Chen, J. Am. Chem. Soc. 132, 138–146 (2009)

    Article  Google Scholar 

  41. G.A. Huff, C.N. Satterfield, Ind. Eng. Chem. Proc. Des. Dev. 23, 696–705 (1984)

    Article  Google Scholar 

  42. S.A. Eliason, C.H. Bartholomew, Studies in Surface Science and Catalysis, ed. by C.H. Bartholomew, G.A. Fuentes (Elsevier, 1997), pp. 517–526

  43. S. Li, S. Krishnamoorthy, A. Li, G.D. Meitzner, E. Iglesia, J. Catal. 206, 202–217 (2002)

    Article  Google Scholar 

  44. S. Li, A. Li, S. Krishnamoorthy, E. Iglesia, Catal. Lett. 77, 197–205 (2001)

    Article  Google Scholar 

  45. A. Nakhaei Pour, M.R. Housaindokht, M. Irani, S.M.K. Shahri, Fuel 116, 787–793 (2014)

    Article  Google Scholar 

  46. A. Nakhaei Pour, M.R. Housaindokht, J. Ind. Eng. Chem. (2013). doi: 10.1016/j.jiec.2013.05.019

  47. A. Nakhaei Pour, M. Housaindokht, Catal Lett 143, 1328–1338 (2013). doi: 10.1007/s10562-013-1070-y

    Google Scholar 

  48. B.-T. Teng, J. Chang, C.-H. Zhang, D.-B. Cao, J. Yang, Y. Liu, X.-H. Guo, H.-W. Xiang, Y.-W. Li, Appl. Catal. A 301, 39–50 (2006)

    Article  Google Scholar 

  49. R. Zhang, J. Chang, Y. Xu, L. Cao, Y. Li, J. Zhou, Energy Fuels 23, 4740–4747 (2009)

    Article  Google Scholar 

  50. Y.-N. Wang, W.-P. Ma, Y.-J. Lu, J. Yang, Y–.Y. Xu, H.-W. Xiang, Y.-W. Li, Y.-L. Zhao, B.-J. Zhang, Fuel 82, 195–213 (2003)

    Article  Google Scholar 

Download references

Acknowledgments

Financial support of the Ferdowsi University of Mashhad, Iran (2/26310-11/2/92) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Nakhaei Pour.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakhaei Pour, A., Housaindokht, M.R., Behroozsarand, A. et al. Thermodynamic analysis of nanoparticle size effect on kinetics in Fischer–Tropsch synthesis by lanthanum promoted iron catalyst. Appl. Phys. A 116, 789–797 (2014). https://doi.org/10.1007/s00339-013-8156-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-013-8156-7

Keywords

Navigation