Skip to main content
Log in

Glass transition kinetics of the binary Si12.5Te87.5 alloy

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Binary Si12.5Te87.5 glass was prepared using the melt-quench technique. Differential scanning calorimetry measurements of the obtained glass measured at different heating rates (10 ≤ α ≤ 70 K/min) have shown three, one endo- and two exothermic, peaks. The glass transition kinetics have been analyzed using the isoconversional (model-free) methods in addition to the model-fitting method. The analysis of the present data shows that the glass transition kinetics are not constant values but vary with the transformed extent (x) and hence with temperature of the specimen. Non-linear decrease of E with increase in the transformed extent could be attributed to a complicated mechanism. Based on the peak shape of n(α) relation, one concludes that two competing mechanisms are working together during transformation of the solid glass to supercooled liquid state. A good agreement between the experimental and the reconstructed (xT) curves confirms the validity of the applied models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. S.N. Zhang, T.J. Zhu, X.B. Zhao, Phys. B 403, 3459 (2008)

    Article  ADS  Google Scholar 

  2. L.A. Kulakova, B.A. Matveev, B.T. Melekh, J. Non-Cryst. Solids 266–269, 969 (2000)

    Article  Google Scholar 

  3. G.E.A. Bartsch, H. Bromme, T. Just, J. Non-Cryst. Solids 18, 65 (1975)

    Article  ADS  Google Scholar 

  4. N. Jaussaud, P. Toulemonde, M. Pouchard, A. San Miguel, P. Gravereau, S. Pechev, G. Goglio, C. Cros, Solid State Sci. 6, 401 (2004)

    Article  ADS  Google Scholar 

  5. A. Schlieper, R. Blachnik, J. Alloys Compd. 235, 237 (1996)

    Article  Google Scholar 

  6. S. Asokan, G. Parthasarathy, E.S.R. Gopal, J. Non-Cryst. Solids 86, 48 (1986)

    Article  ADS  Google Scholar 

  7. S. Asokan, G. Parthasarathy, G.N. Subbanna, E.S.R. Gopal, J. Phys. Chem. Solids 47, 341 (1986)

    Article  ADS  Google Scholar 

  8. M.K. Gauer, I. Dézsi, U. Gonser, G. Langouche, H. Ruppersberg, J. Non-Cryst. Solids 109, 247 (1989)

    Article  ADS  Google Scholar 

  9. R.D. Vengrenovitch, S.V. Podolyanchuk, I.A. Lopatniuk, M.O. Stasik, S.D. Tkachova, J. Non-Cryst. Solids 171, 243 (1994)

    Article  ADS  Google Scholar 

  10. S.R. Elliott, Physics of Amorphous Materials, 2nd edn. (Longman Scientific and Technical, Essex, 1990)

    Google Scholar 

  11. G.W. Scherer, Relaxation in Glasses and Composites (Wiley, New York, 1986)

    Google Scholar 

  12. J. Jackle, Rep. Prog. Phys. 49, 171 (1986)

    Article  ADS  Google Scholar 

  13. C.A. Agnell, W. Sichina, Ann. N.Y. Acad. Sci. 279, 53 (1976)

    Article  ADS  Google Scholar 

  14. M.H. Cohen, G.S. Grest, Phys. Rev. B 21, 4113 (1980)

    Article  ADS  Google Scholar 

  15. P. Tuinstra, P.A. Duine, J. Sietsma, A. van den Beukel, Acta Metall. Mater. 7, 2815 (1995)

    Article  Google Scholar 

  16. M. Abu El-Oyoun, Mater. Chem. Phys. 131, 495 (2011)

    Article  Google Scholar 

  17. A.A. Al-Ghamdi, M.A. Alvi, S.A. Khan, J. Alloys Compd. 509, 2087 (2011)

    Article  Google Scholar 

  18. A.M. Abd Elnaeimm, K.A. Aly, N. Afify, A.M. Abousehlly, J. Alloys Compd. 491, 85 (2010)

    Article  Google Scholar 

  19. F. Abdel-Wahab, Phys. B 5, 1053 (2011)

    Article  ADS  Google Scholar 

  20. A.A. Elabbar, J. Alloys Compd. 476, 125 (2009)

    Article  Google Scholar 

  21. A.A. Abu-Sehly, Thermochim. Acta 501, 103 (2010)

    Article  Google Scholar 

  22. Abdalla A. Elabbar, Phys. B 403, 4328 (2008)

    Article  ADS  Google Scholar 

  23. A.A. Elabbar, J. Alloys Compd. 476, 125 (2009)

    Article  Google Scholar 

  24. H.E. Kissinger, J. Res. Nat. Bur. Stand. 57, 217 (1956)

    Article  Google Scholar 

  25. H.E. Kissinger, Anal. Chem. 29, 1702 (1957)

    Article  Google Scholar 

  26. T. Akahira, T. Sunose, Res. Rep. Chiba Inst. Technol. 16, 22 (1971)

    Google Scholar 

  27. J.H. Flynn, L.A. Wall, J. Res. Natl. Bur. Stand. Sect. A 70, 487 (1966)

    Article  Google Scholar 

  28. T. Ozawa, Bull. Chem. Soc. Jpn. 38, 1881 (1965)

    Article  Google Scholar 

  29. S. Vyazovkin, J. Comput. Chem. 18, 393 (1997)

    Article  Google Scholar 

  30. V.M. Gorbachev, J. Therm. Anal. 8, 349 (1975)

    Article  Google Scholar 

  31. A.A. Joraid, Thermochim. Acta 456, 1 (2007)

    Article  Google Scholar 

  32. B. Jankovic, J. Chem. Eng. 139, 128 (2008)

    Article  Google Scholar 

  33. P. Budrugeac, A.L. Petre, E. Segal, J. Comput. Chem. 47, 123 (1996)

    Google Scholar 

  34. N. Sbirrazzuoli, Y. Girault, E. Elegant, Thermochim. Acta 293, 25 (1997)

    Article  Google Scholar 

  35. P. Budrugeac, D. Homentcovschi, E. Segal, Therm. Anal. Calorim. 66, 557 (2001)

    Article  Google Scholar 

  36. S. Vyazovkin, Anal. Chem. 74, 2749 (2002)

    Article  Google Scholar 

  37. W. Lu, B. Yan, W. Huang, J. Non-Cryst. Solids 351, 3320 (2005)

    Article  ADS  Google Scholar 

  38. B. Jankovic, B. Adnadevic, J. Jovanovic, Thermochim. Acta 452, 106 (2007)

    Article  Google Scholar 

  39. S. Vyazovkin, C.A. Wight, J. Phys. Chem. A 101, 8279 (1997)

    Article  Google Scholar 

  40. J.A. Kennedy, S.M. Clark, Thermochim. Acta 307, 27 (1997)

    Article  Google Scholar 

  41. H.C. Yang, H.C. Eun, Y.Z. Cho, H.S. Lee, I.T. Kim, Thermochim. Acta 484, 77 (2009)

    Article  Google Scholar 

  42. S. Vyazovkin, J. Therm. Anal. Calorim. 83, 45 (2006)

    Article  Google Scholar 

  43. S. Vyazovkin, W. Linert, Chem. Phys. 193, 109 (1995)

    Article  ADS  Google Scholar 

  44. S. Vyazovkin, A.I. Lesnikovich, Thermochim. Acta 128, 297 (1988)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. H. Moharram.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moharram, A.H., Abu El-Oyoun, M. Glass transition kinetics of the binary Si12.5Te87.5 alloy. Appl. Phys. A 116, 311–317 (2014). https://doi.org/10.1007/s00339-013-8122-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-013-8122-4

Keywords

Navigation