Skip to main content
Log in

Fundamentals of designing cylindrical high-order transformation optics invisibility cloaks using silver–silica metamaterials

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Metamaterials have effective properties that are distinct from their composites as they consist of engineered-designed properties that are not in nature. In order to be able to design a metamaterial, we should establish sufficient understanding of the properties of the constituents. This will enable us to engineer new effective parameters of the metamaterial. We shall perform a detailed analytical study for the effective parameters and the constituents’ parameters of silver–silica metamaterial. This will define the optical response of the mixture at different sizes of the inclusions’ and different volume fractions of the silver and silica. Also an optimum value of the volume fraction is proposed to achieve a broadened resonance optical response. Finally, we propose the design technique and constraints of a non-magnetic optical cloaking device, based on high-order transformation optics with different volume fractions of silver and silica.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. N. Park, B. Min, A terahertz metamaterial with unnaturally high effective refractive index. Nature 470, 369–373 (2011)

    Article  ADS  Google Scholar 

  2. C.P. Scarborough, Experimental demonstration of an isotropic metamaterial super lens with negative unity permeability at 8.5 MHz. Appl. Phys. Lett.101, 014101 (2012)

    Google Scholar 

  3. T. Hakkarainen, T. Setäläa, A.T. Friberg, Near-field imaging of interacting nano objects with metal and metamaterial superlenses. New J. Phys. 14, 043019 (2012)

    Article  ADS  Google Scholar 

  4. A. Climente, Omnidirectional broadband acoustic absorber based on metamaterials. Appl. Phys. Lett. 100(14), 144103 (2012)

    Article  ADS  Google Scholar 

  5. Z. Li, K.B. Alici, H. Caglayan, M. Kafesaki, C.M. Soukoulis, E. Ozbay, Composite chiral metamaterials with negative refractive index and high values of the figure of merit. Opt. Express 20(6), 6146–6156 (2012)

    Google Scholar 

  6. J. Fischer, T. Ergin, M. Wegener, Three-dimensional polarization-independent visible-frequency carpet invisibility cloak. Opt. Lett. 36, 2059–2061 (2011)

    Article  ADS  Google Scholar 

  7. L. Huang, D. Zhou, J. Wang, Z. Li, X. Chen, W. Lu, Generalized transformation for nonmagnetic invisibility cloak with minimized scattering. JOSA B 28(4), 922–928 (2011)

    Google Scholar 

  8. F. Gömöory, M. Solovyov, J. Šoucl, C. Navau, J. Prat-Camps, A. Sanchez, Experimental realization of a magnetic cloak. Science 335(6075), 1466–1468 (2012)

    Google Scholar 

  9. H. Chen, C.T. Chan, P. Sheng, Transformation optics and metamaterials. Nat. Mater. 9, 387–396 (2010)

    Google Scholar 

  10. V.M. Shalaev ECE 695s Nanophotonics Lecture 3, (2006) http://nanohub.org/resources/1748

  11. J. Sancho-Parramon, V. Janicki, H. Zorc, On the dielectric function tuning of random metal–dielectric nanocomposites for metamaterial applications. Opt. Express 18(26), 26915–26928 (2010)

    Article  ADS  Google Scholar 

  12. W.S. Cai, U.K. Chettiar, A.V. Kildishev, V.M. Shalaev, Optical cloaking with metamaterials. Nat. Photonics 1, 224–227 (2007)

    Article  ADS  Google Scholar 

  13. V.M. Shalaev, W. Cai Optical metamaterials: fundamentals and applications (Springer Science+Business, New York, 2010)

  14. V.K. Miloslavsky, E.D. Makovetsky, L.A. Ageev, K.S. Beloshenko, Fused silica as a composite nanostructured material. Optika Spektroskopiya 107(5), 854–859 (2009)

    Google Scholar 

  15. A. Pinchuk, G. von Plessen, U. Kreibig, Influence of interband electronic transitions on the optical absorption in metallic nanoparticles. J. Phys. D Appl. Phys. 37, 3133 (2004)

    Article  ADS  Google Scholar 

  16. J. Sancho-Parramon, Surface plasmon resonance broadening of metallic particles in the quasi-static approximation: a numerical study of size confinement and interparticle interaction effects. Nanotechnology 20(23), 23576 (2009)

    Article  Google Scholar 

  17. J. Sancho-Parramon, V. Janicki, M. Loncari, H. Zorc, P. Dubcek , S. Bernstroff, Optical and structural properties of Au–Ag islands films for plasmonic applications. Appl. Phys. A. 103(3), 745–748 (2011)

    Google Scholar 

  18. K.L. Kelly, E. Coronado, L.L. Zhao, G.C.J. Schatz, The optical properties of metal nanoparticles? the influence of size, shape, and dielectric environment. Phys. Chem. B 107(3), 668–677 (2003)

    Article  Google Scholar 

  19. C. Sonnichsen Plasmons in metal nanostructures, Dissertation, University of Munich, 2001

  20. J. Skaar, Fresnel equations and the refractive index of active media, arXiv:physics/0509112v2 [physics.optics] (2006).

  21. V.M. Shalaev, Nonlinear optics of random media: fractal composites and metal–dielectric film (Springer, Berlin, 2000). (STMP-158)

    Google Scholar 

  22. R. Sainidou, G. de Abajo, Plasmon guided modes in nanoparticle metamaterials. Opt. Express 16(7), 4499–4506 (2008)

    Article  ADS  Google Scholar 

  23. W.S. Cai, U.K. Chettiar, A.V. Kildishev, V.M. Shalaev, Designs for optical cloaking with high-order transformations. Opt. Express 16, 5444–5452 (2008)

    Article  ADS  Google Scholar 

  24. J.B. Pendry, D. Schurig, D.R. Smith, Controlling electromagnetic fields. Sci. Exp. 312, 1780–1782 (2006)

    Google Scholar 

Download references

Acknowledgments

Many thanks to the members of the Real Engineer Program in the Arab Academy for Science Technology, and Maritime Transport for their help in this work. I would like to acknowledge Dr. Xuefeng Zhu from Prof. Zhang group in UC Berkeley for helping me in the simulation results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kareem S. Elassy.

Additional information

N. H. Rafat and M. H. Aly are OSA Members.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elassy, K.S., Rafat, N.H., Khedr, M.E. et al. Fundamentals of designing cylindrical high-order transformation optics invisibility cloaks using silver–silica metamaterials. Appl. Phys. A 115, 531–539 (2014). https://doi.org/10.1007/s00339-013-8079-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-013-8079-3

Keywords

Navigation