Skip to main content
Log in

Structure and properties of CaNb2O6:Sm3+ thin films by pulsed laser deposition

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

CaNb2O6:Sm3+ films were prepared on quartz glass and α-Al2O3(001) substrates by pulsed laser deposition. The structural, morphological, and optical properties of the CaNb2O6:Sm3+ films were characterized by X-ray diffraction (XRD), atomic force microscopy (AFM), emission-scan electron microscopy (SEM), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and photoluminescence spectroscopy (PL) measurements. The results show that the structure and properties of CaNb2O6:Sm3+ films were dependent on substrates. The CaNb2O6:Sm3+ films on Al2O3(0001) substrate have better crystallinity. The full-width at half-maximum (FWHM) of (131) peak are 0.45 and 0.32 for the CaNb2O6:Sm3+ film on glass and Al2O3(001), respectively. The crystallite size of CaNb2O6:Sm3+ films grown on glass and Al2O3(001) was about 8.22 and 9.98 nm, respectively. The oxidation state of the Sm element on the films was Sm3+ state. The photoluminescence (PL) spectra were measured at room temperature, the CaNb2O6:Sm3+ films on Al2O3(001) substrate have a better PL intensity, the identified emission bands were by the intra 4f transitions of Sm3+ from the excited level to the lower levels at 567 nm for 4G5/26H5/2 transition, at 609 nm for 4G5/26H7/2 transition, and at 657 nm for 4G5/26H9/2 transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. R.C. Pullar, J.D. Breeze, J. Am. Ceram. Soc. 88, 2466 (2005)

    Article  Google Scholar 

  2. H.J. Lee, K.S. Hong, S. Kim, Mater. Res. Bull. 32, 847 (1997)

    Article  Google Scholar 

  3. Y. Zhang, C. Liu, G. Pang, S. Jiao, S. Zhu, D. Wang, D. Liang, S. Feng, Eur. J. Inorg. Chem. 2010, 1275 (2010)

    Article  Google Scholar 

  4. I.S. Cho, S.T. Bae, D.K. Yim, D.W. Kim, K.S. Hong, J. Am. Ceram. Soc. 92, 506 (2009)

    Article  Google Scholar 

  5. A.A. Ballman, S.P.S. Porto, A. Yariv, J. Appl. Phys. 34, 3155 (1963)

    Article  ADS  Google Scholar 

  6. G.Q. Xie, L.J. Qian, X.D. Xu, Y. Cheng, Z.W. Zhao, D.Y. Tang, J. Zhang, W.D. Tan, J. Xu, Laser Phys. 20, 1331 (2010)

    Article  ADS  Google Scholar 

  7. D.Z. Li, X.D. Xu, C.W. Xu, L.J. Zhang, D.Y. Tang, Y. Cheng, J. Xu, Opt. Lett. 36, 3888 (2011)

    Article  ADS  Google Scholar 

  8. R. de Almeida Silva, J. Cryst. Growth 262, 246 (2004)

    Article  ADS  Google Scholar 

  9. A.S.S. Decamargo, R.A. Silva, J.P. Andreeta, L.A.O. Nunes, Appl. Phys. B 80, 497 (2005)

    Article  ADS  Google Scholar 

  10. D. Van der Voort, J.M.E. De Ruk, G. Blasse, Phys. Status Solidi A 135, 135 (1993)

    Google Scholar 

  11. J. Huang, L. Zhou, X. He, F. Gong, Chin. J. Chem. 29, 441 (2011)

    Article  Google Scholar 

  12. A. Wachtel, J. Eletrochem. Soc. 111, 534 (1964)

    Article  Google Scholar 

  13. X.Z. Xiao, B. Yan, J. Alloys Compd. 456, 447 (2008)

    Article  Google Scholar 

  14. H.K. Yang, J.W. Chung, B.K. Moon, B.C. Choi, J.H. Jeong, S. Yi, Appl. Phys. A 92, 337 (2008)

    Article  ADS  Google Scholar 

  15. J.C. Park, H.K. Moon, D.K. Kim, S.H. Byeon, B.C. Kim, K.S. Suh, Appl. Phys. Lett. 77, 2162 (2000)

    Article  ADS  Google Scholar 

  16. E. Husson, Y. Repelin, N.Q. Dao, H. Brusset, Spectrochim. Acta A 33, 995 (1977)

    Article  ADS  Google Scholar 

  17. B. Demri, D. Muster, J. Mater. Process. Technol. 55, 311 (1995)

    Article  Google Scholar 

  18. P. Steiner, H.Z. Hoechst, Physik B 35, 51 (1979)

    Article  Google Scholar 

  19. M.K. Bahl, J. Phys. Chem. Solids 36, 485 (1975)

    Article  ADS  Google Scholar 

  20. C.D. Wagner, W.M. Riggs, L.E. Davis, J.F. Moulder, G.E. Muilenberg, Handbook of X-Ray Photoelectron Spectroscopy Perkin-Elmer Corporation, Physical Electronics Division, Eden Prairie, Minn. 55344 (1979)

  21. Y. Mori, S. Tanemura, Appl. Surf. Sci. 253, 3856 (2007)

    Article  ADS  Google Scholar 

  22. X. Xiao, B. Yan, J. Non-Cryst. Solids 351, 3634 (2005)

    Article  ADS  Google Scholar 

  23. N. Kumada, N. Kinomiura, J. Solid State Chem. 147, 671 (1999)

    Article  ADS  Google Scholar 

  24. L. Shi, Y. Huang, H.J. Seo, J. Phys. Chem. A 114, 6927 (2010)

    Article  Google Scholar 

  25. B.R. Judd, Phys. Rev. 127, 750 (1962)

    Article  ADS  Google Scholar 

  26. G.S. Ofelt, J. Chem. Phys. 37, 511 (1962)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by China Postdoctoral Science Foundation (No. 2012M511801), National Nature Science Foundation of China (No. 51072054, 51172078 and 51132004) and Science and technology project in Guangzhou (No. 2013J4100045).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yinzhen Wang or Jianrong Qiu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Zhang, L., Cao, R. et al. Structure and properties of CaNb2O6:Sm3+ thin films by pulsed laser deposition. Appl. Phys. A 115, 1365–1370 (2014). https://doi.org/10.1007/s00339-013-8011-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-013-8011-x

Keywords

Navigation