Skip to main content
Log in

Magnetic medium broadband metamaterial absorber based on the coupling resonance mechanism

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this paper, we present a design, simulation and experimental measurement of a metamaterial absorber (MMA) in the microwave regime. The proposed MMA structure consists of periodic cross electric resonators separated from the ground metal plane using a magnetic composite layer. The broadband absorption can be ascribed to the periodic cross electric resonators. The anti-parallel currents are observed at the peak frequency on the surface of the MMA and the ground metal plane, respectively, and thus the coupled resonance magnetic field occurs in the magnetic medium resulting in the magnetic loss. The new absorption peak located at 2.8 GHz broadens the whole absorption spectrum. The frequency of this peck is lower than that of the cross resonator of 3.7 GHz, suggesting the distinguish resonance mechanism: the absorbing properties are ascribed to the phase cancellation, Ohmic loss, dielectric loss at the end of the cross pattern, and the magnetic loss caused by the above mentioned coupled magnetic field. The obvious absorption peak at 2.8 GHz is also observed experimentally verifying the simulation result. All these results indicate the proposed MMA structure is promising for microwave absorbing application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. S. Zhang, W. Fan, N. Panoiu, K. Malloy, R. Osgood, S. Brueck, Phys. Rev. Lett. 95(13) (2005)

  2. N. Fang, H. Lee, C. Sun, X. Zhang, Science 308(5721), 534–537 (2005)

    Article  ADS  Google Scholar 

  3. Y. Liu, S. Palomba, Y. Park, T. Zentgraf, X. Yin, X. Zhang, Nano Lett. 12(9), 4853–4858 (2012)

    Article  ADS  Google Scholar 

  4. A. Alu, N. Engheta, Nat. Photonics 2(5), 307–310 (2008)

    Article  Google Scholar 

  5. X.-W. Chen, V. Sandoghdar, M. Agio, Phys. Rev. Lett. 110(15) (2013)

  6. W. Cai, U.K. Chettiar, A.V. Kildishev, V.M. Shalaev, Nat. Photonics 1(4), 224–227 (2007)

    Article  ADS  Google Scholar 

  7. M.C. Wiltshire, J.B. Pendry, I.R. Young, D.J. Larkman, D.J. Gilderdale, J.V. Hajnal, Science 291(5505), 849–851 (2001)

    Article  ADS  Google Scholar 

  8. D.R. Smith, W.J. Padilla, D.C. Vier, S.C. Nemat-Nasser, S. Schultz, Phys. Rev. Lett. 84(18), 4184–4187 (2000)

    Article  ADS  Google Scholar 

  9. B. Edwards, A. Alù, M. Silveirinha, N. Engheta, Phys. Rev. Lett. 103(15) (2009)

  10. M. Gokkavas, K. Guven, I. Bulu, K. Aydin, R. Penciu, M. Kafesaki, C. Soukoulis, E. Ozbay, Phys. Rev. B 73(19) (2006)

  11. T.J. Yen, W.J. Padilla, N. Fang, D.C. Vier, D.R. Smith, J.B. Pendry, D.N. Basov, X. Zhang, Science 303(5663), 1494–1496 (2004)

    Article  ADS  Google Scholar 

  12. H.-T. Chen, J.F. O’Hara, A.K. Azad, A.J. Taylor, R.D. Averitt, D.B. Shrekenhamer, W.J. Padilla, Nat. Photonics 2(5), 295–298 (2008)

    Article  Google Scholar 

  13. L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H.A. Bechtel, X. Liang, A. Zettl, Y.R. Shen, Nat. Nanotechnol. 6(10), 630–634 (2011)

    Article  ADS  Google Scholar 

  14. S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, C.M. Soukoulis, Science 306(5700), 1351–1353 (2004)

    Article  ADS  Google Scholar 

  15. A.D. Falco, M. Ploschner, T.F. Krauss, New J. Phys. 12(11), 113006 (2010)

    Article  Google Scholar 

  16. C. García-Meca, J. Hurtado, J. Martí, A. Martínez, W. Dickson, A.V. Zayats, Phys. Rev. Lett. 106(6) (2011)

  17. N.I. Landy, S. Sajuyigbe, J.J. Mock, D.R. Smith, W.J. Padilla, Phys. Rev. Lett. 100(20), 207402 (2008)

    Article  ADS  Google Scholar 

  18. H. Tao, N.I. Landy, C.M. Bingham, X. Zhang, R.D. Averitt, W.J. Padilla, Opt. Express 16(10), 7181–7188 (2008)

    Article  ADS  Google Scholar 

  19. K. Bi, J. Zhou, H. Zhao, X. Liu, C. Lan, Opt. Express 21(9), 10746 (2013)

    Article  ADS  Google Scholar 

  20. X. Shen, Y. Yang, Y. Zang, J. Gu, J. Han, W. Zhang, T. Jun Cui, Appl. Phys. Lett. 101(15), 154102 (2012)

    Article  ADS  Google Scholar 

  21. S. Gu, J.P. Barrett, T.H. Hand, B.I. Popa, S.A. Cummer, J. Appl. Phys. 108(6), 064913 (2010)

    Article  ADS  Google Scholar 

  22. H.-T. Chen, Opt. Express 20, 7165–7172 (2012)

    Article  ADS  Google Scholar 

  23. L.K. Sun, H.F. Cheng, Y.J. Zhou, J. Wang, Appl. Phys. A 105, 49–53 (2011)

    Article  ADS  Google Scholar 

  24. CST Microwave Studio 2006 by Computer Simulation Technology. Available online: http://www.cst.com

  25. F. Qin, C. Brosseau, J. Appl. Phys. 111(6), 061301 (2012)

    Article  ADS  Google Scholar 

  26. C. Kittel, Phys. Rev. 73(2), 155–161 (1948)

    Article  ADS  Google Scholar 

  27. N. Yoshikawa, T. Kato, J. Phys. D: Appl. Phys. 43(42), 425403 (2010)

    Article  ADS  Google Scholar 

  28. D. Micheli, C. Apollo, R. Pastore, M. Marchetti, Compos. Sci. Technol. 70(2), 400–409 (2010)

    Article  Google Scholar 

  29. S.-S. Kim, S.-T. Kim, Y.-C. Yoon, K.-S. Lee, J. Appl. Phys. 97(10), 10F905 (2005)

    Google Scholar 

  30. R.L. Fante, M.T. McCormack, IEEE Trans. Antennas Propag. 36(10), 1443–1454 (1988)

    Article  ADS  Google Scholar 

  31. E. Knott, K. Langseth, IEEE Trans. Antennas Propag. 28(1), 137–139 (1980)

    Article  ADS  Google Scholar 

  32. L. Huang, H. Chen, Prog. Electromagn. Res. 113, 103–110 (2011)

    Google Scholar 

  33. M. Chen, Y. Pei, D. Fang, Appl. Phys. A 108(1), 75–80 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The work is supported by the State Key Laboratory of Explosion Science and Technology, BIT, PR China. WCL thanks the Chinese Scholarship Council for the financial support of his study in ACCIS, Bristol University, UK. FXQ is supported under the JSPS fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaojing Qiao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, W., Qiao, X., Luo, Y. et al. Magnetic medium broadband metamaterial absorber based on the coupling resonance mechanism. Appl. Phys. A 115, 229–234 (2014). https://doi.org/10.1007/s00339-013-7996-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-013-7996-5

Keywords

Navigation