Skip to main content
Log in

Processing and characterization of α-elastin electrospun membranes

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Elastin isolated from fresh bovine ligaments was dissolved in a mixture of 1,1,1,3,3,3-Hexafluoro-2-propanol and water were electrospun into fiber membranes under different processing conditions. Fiber mats of randomly and aligned fibers were obtained with fixed and rotating ground collectors and fibrils were composed by thin ribbons whose width depends on electrospinning conditions; fibrils with 721 nm up to 2.12 μm width were achieved. After cross-linking with glutaraldehyde, α-elastin can uptake as much as 1700 % of PBS solution and a slight increase on fiber thickness was observed. The glass transition temperature of electrospun fiber mats was found to occur at ∼80 °C. Moreover, α-Elastin showed to be a perfect elastomeric material, and no mechanical hysteresis was found in cycle mechanical measurements. The elastic modulus obtained for random and aligned fibers mats in a PBS solution was 330±10 kPa and 732±165 kPa, respectively. Finally, the electrospinning and cross-linking process does not inhibit MC-3T3-E1 cell adhesion. Cell culture results showed good cell adhesion and proliferation in the cross-linked elastin fiber mats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J.E. Wagenseil, R.P. Mecham, Birth defects research, Part C: Embryo today. Reviews 81, 229 (2007). doi:10.1002/bdrc.20111

    Google Scholar 

  2. F.W. Keeley, C.M. Bellingham, K.A. Woodhouse, Philos. Trans. R. Soc. Lond. B, Biol. Sci. 357, 185 (2002). doi:10.1098/rstb.2001.1027

    Article  Google Scholar 

  3. G.W. Chalmers, J.M. Gosline, M.A. Lillie, J. Exp. Biol. 202, 301 (1999)

    Google Scholar 

  4. B. Li, V. Daggett, J. Muscle Res. Cell Motil. 23, 561 (2002). doi:10.1023/a:1023474909980

    Article  Google Scholar 

  5. J. Uitto, J. Invest. Dermatol. 72, 1 (1979)

    Article  Google Scholar 

  6. P. Brown-Augsburger, T. Broekelmann, J. Rosenbloom, R.P. Mecham, Biochem. J. 318, 149 (1996)

    Google Scholar 

  7. A.S. Tatham, P.R. Shewry, Trends Biochem. Sci. 25, 567 (2000). doi:10.1016/S0968-0004(00)01670-4

    Article  Google Scholar 

  8. D.W. Urry, What Sustains Life? Consilient Mechanisms for Protein-Based Machines and Materials (Springer, Singapore, 2006)

    Google Scholar 

  9. B.A. Cox, B.C. Starcher, D.W. Urry, J. Biol. Chem. 249, 997 (1974)

    Google Scholar 

  10. J.C. Rodríguez-Cabello, M. Alonso, M.I. Díez, M.I. Caballero, M.M. Herguedas, Macromol. Chem. Phys. 200, 1831 (1999). doi:10.1002/(sici)1521-3935(19990801)200:8<1831::aid-macp1831>3.0.co;2-v

    Article  Google Scholar 

  11. R. Machado, A.J. Ribeiro, J. Padrão et al., J. Nanopart. Res. 6, 133 (2009). doi:10.4028/www.scientific.net/JNanoR.6.133

    Article  Google Scholar 

  12. Z. Indik, H. Yeh, N. Ornstein-Goldstein et al., Proc. Natl. Acad. Sci. 84, 5680 (1987)

    Article  ADS  Google Scholar 

  13. J.F. Almine, D.V. Bax, S.M. Mithieux et al., Chem. Soc. Rev. 39, 3371 (2010)

    Article  Google Scholar 

  14. L. Nivison-Smith, J. Rnjak, A.S. Weiss, Acta Biomater. 6, 354 (2010). doi:10.1016/j.actbio.2009.08.011

    Article  Google Scholar 

  15. W.E. Teo, S. Ramakrishna, Nanotechnology 17, R89 (2006)

    Article  ADS  Google Scholar 

  16. M.S. El-Kurdi, Y. Hong, J.J. Stankus, L. Soletti, W.R. Wagner, D.A. Vorp, Biomaterials 29, 3213 (2008). doi:10.1016/j.biomaterials.2008.04.009

    Article  Google Scholar 

  17. J. Stitzel, J. Liu, S.J. Lee et al., Biomaterials 27, 1088 (2006). doi:10.1016/j.biomaterials.2005.07.048

    Article  Google Scholar 

  18. L. Buttafoco, N.G. Kolkman, P. Engbers-Buijtenhuijs et al., Biomaterials 27, 724 (2006). doi:10.1016/j.biomaterials.2005.06.024

    Article  Google Scholar 

  19. R. Tarnawski, J. Kasperczyk, M. Drózdż, Ups. J. Med. Sci. 98, 53 (1993). doi:10.3109/03009739309179303

    Article  Google Scholar 

  20. B. Vrhovski, A.S. Weiss, Eur. J. Biochem. 258, 1 (1998). doi:10.1046/j.1432-1327.1998.2580001.x

    Article  Google Scholar 

  21. S.M. Mithieux, J.E.J. Rasko, A.S. Weiss, Biomaterials 25, 4921 (2004). doi:10.1016/j.biomaterials.2004.01.055

    Article  Google Scholar 

  22. M. Li, M.J. Mondrinos, M.R. Gandhi, F.K. Ko, A.S. Weiss, P.I. Lelkes, Biomaterials 26, 5999 (2005). doi:10.1016/j.biomaterials.2005.03.030

    Article  Google Scholar 

  23. L. Gotte, P. Stern, D.F. Elsden, S.M. Partridge, Biochem. J. 87, 344 (1963)

    Google Scholar 

  24. S.M. Partridge, H.F. Davis, Biochem. J. 61, 21 (1955)

    Google Scholar 

  25. M.D. Abramoff, P.J. Magalhães, S.J. Ram, Biophoton. Int. 11, 36 (2004)

    Google Scholar 

  26. S. Ramakrishna, K. Fujihara, W.E. Teo, T.C. Lim, Z. Ma, Introduction to Electrospinning and Nanofibers (World Scientific, Singapore, 2005)

    Book  Google Scholar 

  27. C. Ribeiro, V. Sencadas, J.L.G. Ribelles, S. Lanceros-Méndez, Soft Mater. 8, 274 (2010)

    Article  Google Scholar 

  28. V. Sencadas, D.M. Correia, C. Ribeiro et al., Polym. Test. 31, 1062 (2012). doi:10.1016/j.polymertesting.2012.07.010

    Article  Google Scholar 

  29. V. Sencadas, C. Ribeiro, J. Nunes-Pereira, V. Correia, S. Lanceros-Méndez, Appl. Phys. A, Mater. Sci. Process. 109, 685 (2012). doi:10.1007/s00339-012-7101-5

    Article  ADS  Google Scholar 

  30. R. Clarisse, S. Vitor, C. Carlos Miguel, R. José Luís Gómez, L.-M. Senentxu, Sci. Technol. Adv. Mater. 12, 015001 (2011)

    Article  Google Scholar 

  31. A. Arinstein, E. Zussman, Phys. Rev. E 76, 056303 (2007)

    Article  ADS  Google Scholar 

  32. S. Koombhongse, W. Liu, D.H. Reneker, J. Polym. Sci., Part B, Polym. Phys. 39, 2598 (2001). doi:10.1002/polb.10015

    Article  ADS  Google Scholar 

  33. X.-H. Qin, Y.-Q. Wan, J.-H. He, J. Zhang, J.-Y. Yu, S.-Y. Wang, Polymer 45, 6409 (2004). doi:10.1016/j.polymer.2004.06.031

    Article  Google Scholar 

  34. S. Zhao, X. Wu, L. Wang, Y. Huang, J. Appl. Polym. Sci. 91, 242 (2004). doi:10.1002/app.13196

    Article  Google Scholar 

  35. K. Gao, X. Hu, C. Dai, T. Yi, Mater. Sci. Eng. B 131, 100 (2006). doi:10.1016/j.mseb.2006.03.035

    Article  Google Scholar 

  36. M.M. Demir, I. Yilgor, E. Yilgor, B. Erman, Polymer 43, 3303 (2002). doi:10.1016/s0032-3861(02)00136-2

    Article  Google Scholar 

  37. S. Megelski, J.S. Stephens, D.B. Chase, J.F. Rabolt, Macromolecules 35, 8456 (2002). doi:10.1021/ma020444a

    Article  ADS  Google Scholar 

  38. V. Sencadas, D.M. Correia, A. Areias et al., Carbohydr. Polym. (2011). doi:10.1016/j.carbpol.2011.09.017

    Google Scholar 

  39. R. Clarisse et al., Sci. Technol. Adv. Mater. 12, 015001 (2011)

    Article  Google Scholar 

  40. X.M. Mo, C.Y. Xu, M. Kotaki, S. Ramakrishna, Biomaterials 25, 1883 (2004). doi:10.1016/j.biomaterials.2003.08.042

    Article  Google Scholar 

  41. P.J. Flory, Principles of Polymer Chemistry (Cornell University Press, Ithaca, 1953)

    Google Scholar 

  42. C.M. Ofner III, W.A. Bubnis, Pharm. Res. 13, 1821 (1996). doi:10.1023/a:1016029023910

    Article  Google Scholar 

  43. G. Ceccorulli, M. Scandola, G. Pezzin, Biopolymers 16, 1505 (1977). doi:10.1002/bip.1977.360160710

    Article  Google Scholar 

  44. V. Samouillan, F. Delaunay, J. Dandurand et al., J. Funct. Biomater. 2, 230 (2011)

    Article  Google Scholar 

  45. L. Debelle, A.J.P. Alix, M.-P. Jacob et al., J. Biol. Chem. 270, 26099 (1995). doi:10.1074/jbc.270.44.26099

    Article  Google Scholar 

  46. W.F. Daamen, J.H. Veerkamp, J.C.M. van Hest, T.H. van Kuppevelt, Biomaterials 28, 4378 (2007). doi:10.1016/j.biomaterials.2007.06.025

    Article  Google Scholar 

  47. M.-C. Popescu, C. Vasile, O. Craciunescu, Biopolymers 93, 1072 (2010). doi:10.1002/bip.21524

    Article  Google Scholar 

  48. B.B. Aaron, J.M. Gosline, Biopolymers 20, 1247 (1981). doi:10.1002/bip.1981.360200611

    Article  Google Scholar 

Download references

Acknowledgements

This work is funded by FEDER funds through the “Programa Operacional Factores de Competitividade—COMPETE” and by national funds arranged by FCT- Fundação para a Ciência e a Tecnologia, project references NANO/NMed-SD/0156/2007, PTDC/CTM-NAN/112574/2009, and PEST-C/FIS/UI607/2011. The authors also thank funding from “Matepro—Optimizing Materials and Processes”, ref. “NORTE-07-0124-FEDER-000037”, cofunded by the “Programa Operacional Regional do Norte” (ON.2–O Novo Norte), under the “Quadro de Referência Estratégico Nacional” (QREN), through the “Fundo Europeu de Desenvolvimento Regional” (FEDER). The authors also thank support from the COST Action MP1003, 2010 ‘European Scientific Network for Artificial Muscles’. VS, JP, JS, and DMC thank the FCT for the SFRH/BD/48708/2008, SFRH/BD/64901/2009, SFRH/BPD/64958/2009 and SFRH/BPD/63148/2009, and SFRH/BD/82411/2011 grants, respectively. JLGR acknowledges the support of the Spanish Ministry of Science and Innovation through project No. MAT2010-21611-C03-01 (including the FEDER financial support). CIBER-BBN is an initiative funded by the VI National R&D&i Plan 2008–2011, Iniciativa Ingenio 2010, Consolider Program, CIBER Actions and financed by the Instituto de Salud Carlos III with assistance from the European Regional Development Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Sencadas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Araujo, J., Padrão, J., Silva, J.P. et al. Processing and characterization of α-elastin electrospun membranes. Appl. Phys. A 115, 1291–1298 (2014). https://doi.org/10.1007/s00339-013-7984-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-013-7984-9

Keywords

Navigation