Skip to main content
Log in

Efficacy of nanolime in restoration procedures of salt weathered limestone rock

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Salt crystallisation process is one of the most powerful weathering agents in stone materials, especially in the coastal areas, where sea-spray transports large amount of salts on the stone surface. The consolidation of such degraded stone material represents a critical issue in the field of restoration of cultural heritage. In this paper, the nanolime consolidation behaviour in limestone degraded by salt crystallization has been assessed. For this purpose, a stone material taken from a Sicilian historical quarry and widely used in the eastern Sicilian Baroque architecture has been artificially degraded by the salt crystallization test. Then degraded samples have been treated with NanoRestore®, a suspension of nanolime in isopropyl alcohol. To evaluate the consolidating effectiveness, the peeling test and point load test were performed. Moreover, mercury intrusion porosimetry has been executed to evaluate the variations induced by treatment, while colorimetric measurements have been aimed to assess aesthetical issues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M.F. La Russa, G. Barone, C.M. Belfiore, P. Mazzoleni, A. Pezzino, Environ. Earth Sci. 62, 1263–1272 (2011)

    Article  Google Scholar 

  2. C.M. Belfiore, G.V. Fichera, M.F. La Russa, A. Pezzino, S.A. Ruffolo, Period. Mineral. 81, 19–33 (2012)

    Google Scholar 

  3. M. Angeli, J.P. Bigas, D. Benavente, B. Menendez, R. Herbert, C. David, Environ. Geol. 52, 187–195 (2007)

    Article  Google Scholar 

  4. D. Benavente, M.A. Garcia del Cura, J. Garcia-Guinea, S. Sanchez-Moral, S. Ordonez, J. Cryst. Growth 260, 532 (2004)

    Article  ADS  Google Scholar 

  5. D.H. Everett, Trans. Faraday Soc. 57, 1541 (1961)

    Article  Google Scholar 

  6. B. Fitzner, R. Snethlage, GP News Lett. 3, 13 (1982)

    Google Scholar 

  7. M. Steiger, J. Cryst. Growth 282, 455 (2005)

    Article  ADS  Google Scholar 

  8. D. Benavente, M.A. Garcìa del Cura, R. Fort, S. Ordonez, J. Cryst. Growth 204, 168 (1999)

    Article  ADS  Google Scholar 

  9. M.F. La Russa, S.A. Ruffolo, C.M. Belfiore, P. Aloise, L. Randazzo, N. Rovella, A. Pezzino, G. Montana, Period. Mineral. 82, 113 (2013)

    Google Scholar 

  10. A. Moropoulou, N. Kouloumbi, G. Haralampopoulos, A. Konstanti, P. Michailidis, Prog. Org. Coat. 48, 259 (2003)

    Article  Google Scholar 

  11. M.F. La Russa, S.A. Ruffolo, N. Rovella, C.M. Belfiore, A.M. Palermo, M.T. Guzzi, G.M. Crisci, Prog. Org. Coat. 74, 186 (2012)

    Article  Google Scholar 

  12. S.A. Ruffolo, M.F. La Russa, M. Malagodi, C. Oliviero Rossi, A.M. Palermo, G.M. Crisci, Appl. Phys. A 100, 829 (2010)

    Article  ADS  Google Scholar 

  13. B. Salvadori, L. Dei, Langmuir 17, 2371 (2001)

    Article  Google Scholar 

  14. M. Ambrosi, L. Dei, R. Giorgi, C. Neto, P. Baglioni, Langmuir 17, 4251 (2001)

    Article  Google Scholar 

  15. M. Ambrosi, L. Dei, R. Giorgi, C. Neto, P. Baglioni, Prog. Colloid & Polym. Sci. 118, 68 (2001)

    Article  Google Scholar 

  16. R. Giorgi, L. Dei, P. Baglioni, Stud. Conserv. 45, 154 (2000)

    Google Scholar 

  17. B. Salvadori, L. Dei, Langmuir 17, 2371 (2001)

    Article  Google Scholar 

  18. V. Daniele, G. Taglieri, R. Quaresima (2008). doi:10.1016/j.culher.2007.10.007

  19. M. Ambrosi, L. Dei, R. Giorgi, C. Neto, P. Baglioni, Prog. Colloid & Polym. Sci. 118, 68 (2001)

    Article  Google Scholar 

  20. R. Giorgi, L. Dei, M. Ceccato, C. Schettino, P. Baglioni, Langmuir 18, 8198 (2002)

    Article  Google Scholar 

  21. P. Baglioni, R. Giorgi, Soft Matter 2, 293 (2006)

    Article  ADS  Google Scholar 

  22. M.F. La Russa, G. Barone, P. Mazzoleni, A. Pezzino, V. Crupi, D. Majolino, Appl. Phys. A 92, 185 (2008)

    Article  ADS  Google Scholar 

  23. L. Anania, A. Badalà, G. Barone, C.M. Belfiore, C. Calabrò, M.F. La Russa, P. Mazzoleni, A. Pezzino, Constr. Build. Mater. 33, 122 (2012)

    Article  Google Scholar 

  24. EN 12370, Natural stone test methods—determination of resistance to salt crystallization, 1999–2003 (2001)

  25. ISO 11664-4:2008, Colorimetry—Part 4: CIE 1976 L a b Colourspace (2008)

  26. M. Drdàcky, J. Lesàk, S. Rescic, Z. Slìzkovà, P. Tiano, J. Valach, Mater. Struct. 45, 505 (2012)

    Article  Google Scholar 

  27. ASTM D 5731, Standard Test Method for Determination of the Point Load Strength Index of Rock (2002)

  28. G. Vigliano, Graffiti and Antigraffiti Project (2002). http://www.icr.beniculturali.it

  29. H.W. Wellman, A.T. Wilson, in Encyclopedia of Geomorphology, ed. by R.W. Fairbridge (1968), p. 968

    Chapter  Google Scholar 

  30. A. Arnold, K. Zehnder, in First International Symposium: The Conservation of Monuments in the Mediterranean Basin, Bari (Italy) (1989), pp. 31–58

    Google Scholar 

  31. R. Rossi-Manaresi, A. Tucci, Stud. Conserv. 36, 53 (1991)

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by national research project IT@CHA—Tecnologie Italiane per applicazioni avanzate nei Beni Culturali (Advanced Italian technology for Cultural Heritage).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvestro A. Ruffolo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ruffolo, S.A., La Russa, M.F., Aloise, P. et al. Efficacy of nanolime in restoration procedures of salt weathered limestone rock. Appl. Phys. A 114, 753–758 (2014). https://doi.org/10.1007/s00339-013-7982-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-013-7982-y

Keywords

Navigation