Skip to main content
Log in

Influence of laser repetition rate on ferroelectric properties of pulsed laser deposited BaTiO3 films on platinized silicon substrate

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

BaTiO3 thin films were deposited by pulsed laser deposition on Pt–Si at different laser pulse repetition frequencies. X-ray diffraction spectra show that preferred oriented films can be grown by adjusting the pulse repetition frequency. Enhanced dielectric and ferroelectric properties obtained in films deposited at 1 Hz is attributed to preferred orientation, low strain and homogeneous grain distribution. The films deposited at 1 Hz show an impressive remanent polarization of 21.4 μC/cm2 with a coercive field of 70.0 kV/cm. The shift in Curie temperature, which stems from changing the laser pulse repetition frequency, is associated with the strain state in the film.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M. Dawber, K.M. Rabe, J.F. Scott, Rev. Mod. Phys. 77, 1083 (2005)

    Article  ADS  Google Scholar 

  2. Z. Wang, Y. Yang, R. Viswan, J.-F. Li, D. Viehland, Control of crystallization and ferroelectric properties of BaTiO3 thin films on alloy substrates, in Ferroelectrics—Material Aspects, ed. by M. Lallart (InTech, Croatia, 2011). ISBN: 978-953-307-332-3. Available from: http://www.intechopen.com/books/ferroelectrics-material-aspects/control-of-crystallization-and-ferroelectric-properties-of-batio3-thin-films-on-alloy-substrates

    Google Scholar 

  3. J. Zhang, D. Cui, Y. Zhou, L. Li, Z. Chen, M. Szabadi, P. Hess, Thin Solid Films 287, 101 (1996)

    Article  ADS  Google Scholar 

  4. J.W. Jang, S.J. Chung, W.J. Cho, T.S. Hahn, S.S. Choi, J. Appl. Phys. 81, 6322 (1997)

    Article  ADS  Google Scholar 

  5. O. Trithaveesak, J. Schubert, Ch. Buchal, J. Appl. Phys. 98, 114101 (2005)

    Article  ADS  Google Scholar 

  6. I.D. Kim, Y. Avrahami, H.L. Tuller, Y.B. Park, M.J. Dicken, H.A. Atwater, Appl. Phys. Lett. 86, 192907 (2005)

    Article  ADS  Google Scholar 

  7. M.A. McCormick, E.B. Slamovich, J. Eur. Ceram. Soc. 23, 2143 (2003)

    Article  Google Scholar 

  8. V. Swamy, B.C. Muddle, Q. Dai, Appl. Phys. Lett. 89, 163118 (2006)

    Article  ADS  Google Scholar 

  9. A. Khodorov, M. Pereira, M.J.M. Gomes, J. Eur. Ceram. Soc. 25, 2285 (2005)

    Article  Google Scholar 

  10. B. Dkhil, E. Defaÿ, J. Guillan, Appl. Phys. Lett. 90, 022908 (2007)

    Article  ADS  Google Scholar 

  11. G. Catalan, B. Noheda, J. McAneney, L.J. Sinnamon, J.M. Gregg, Phys. Rev. B 72, 020102(R) (2005)

    Article  ADS  Google Scholar 

  12. J. Miao, K.H. Chew, Y. Jiang, Appl. Phys. Lett. 99, 232910 (2011)

    Article  ADS  Google Scholar 

  13. M.E. Marssi, F.L. Marrec, I.A. Lukyanchuk, M.G. Karkut, J. Appl. Phys. 94, 3307 (2003)

    Article  ADS  Google Scholar 

  14. D. Cui, C. Li, K. Ma, Y. Zhou, Y. Liu, Z. Chen, J. Ma, L. Li, Appl. Phys. Lett. 68, 750 (1996)

    Article  ADS  Google Scholar 

  15. M. Di Domenico, S.H. Wemple, S.P.S. Porto, R.P. Bauman, Phys. Rev. 174, 522 (1968)

    Article  ADS  Google Scholar 

  16. N.D. Scarisoreanu, R. Birjega, A. Andrei, M. Dinescu, F. Craciun, C. Galassi, Phase transitions, dielectric and ferroelectric properties of lead-free NBT-BT thin films, in Advances in Ferroelectrics, ed. by A. Peláiz-Barranco (InTech, Croatia, 2012). ISBN: 978-953-51-0885-6, doi:10.5772/52395. Available from: http://www.intechopen.com/books/advances-in-ferroelectrics/phase-transitions-dielectric-and-ferroelectric-properties-of-lead-free-ferroelectric-nbt-bt-thin-fil

    Google Scholar 

  17. J. Wang, T. Zhang, J. Xiang, W. Li, S. Duo, M. Li, J. Mater. Sci., Mater. Electron. 20, 44 (2009)

    Article  Google Scholar 

  18. B. Lee, J. Zhang, Thin Solid Films 388, 107 (2001)

    Article  ADS  Google Scholar 

  19. W.J. Merz, Phys. Rev. 76, 1221 (1949)

    Article  ADS  Google Scholar 

  20. B.H. Hoerman, G.M. Ford, L.D. Kaufmann, B.W. Wessels, Appl. Phys. Lett. 73, 2248 (1998)

    Article  ADS  Google Scholar 

  21. L.W. Chang, M. McMillen, J.M. Gregg, Appl. Phys. Lett. 94, 212905 (2009)

    Article  ADS  Google Scholar 

  22. D. Balzar, P.A. Ramakrishnan, A.M. Hermann, Phys. Rev. B 70, 092103 (2004)

    Article  ADS  Google Scholar 

  23. K.M. Ring, K.L. Kavanagh, J. Appl. Phys. 94, 5982 (2003)

    Article  ADS  Google Scholar 

  24. Y. Sakabe, Y. Yamashita, H. Yamamoto, J. Eur. Ceram. Soc. 25, 2739 (2005)

    Article  Google Scholar 

  25. M.H. Lente, A. Picinin, J.P. Rino, J.A. Eiras, J. Appl. Phys. 95, 2646 (2004)

    Article  ADS  Google Scholar 

  26. K.C. Sekhar, A. Nautiyal, R. Nath, J. Appl. Phys. 105, 024109 (2009)

    Article  ADS  Google Scholar 

  27. J.P.B. Silva, K.C. Sekhar, A. Almeida, J. Agostinho Moreira, M. Pereira, M.J.M. Gomes, Appl. Phys. A (2013, in press). doi:10.1007/s00339-013-7602-x. Available online from 9 February 2013

    Google Scholar 

  28. A. Laha, E. Bugiel, J.X. Wang, Q.Q. Sun, A. Fissel, H.J. Osten, Appl. Phys. Lett. 93, 182907 (2008)

    Article  ADS  Google Scholar 

  29. Y. Xiao, V.B. Shenoy, K. Bhattacharya, Phys. Rev. Lett. 95, 247603 (2005)

    Article  ADS  Google Scholar 

  30. U. Boettger, V. Bryksin, Hopping Conduction in Solids (Akademie, Berlin, 1995), pp. 55–73

    Google Scholar 

  31. L. Pintilie, Charge transport in ferroelectric thin films, in Ferroelectrics—Physical Effects, ed. by M. Lallart (InTech, Croatia, 2011). ISBN: 978-953-307-453-5. Available from: http://www.intechopen.com/books/ferroelectrics-physical-effects/charge-transport-in-ferroelectric-thin-films

    Google Scholar 

  32. J.P.B. Silva, K.C. Sekhar, A. Almeida, J. Agostinho Moreira, J. Martín-Sánchez, M. Pereira, A. Khodorov, M.J.M. Gomes, J. Appl. Phys. 112, 044105 (2012)

    Article  ADS  Google Scholar 

  33. M. Wöhlecke, V. Marrello, A. Onton, J. Appl. Phys. 48, 1748 (1977)

    Article  ADS  Google Scholar 

  34. J. Hiltunen, D. Seneviratne, R. Sun, M. Stolfi, H.L. Tuller, J. Lappalainen, V. Lantto, J. Electroceram. 22, 416 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

The author J.P.B.S. thanks FCT for financial support (grant SFRH/BD/44861/2008). K.C.S. thanks FCT for a post-doctoral grant (SFRH/BPD/68489/2010). This work has been partially funded by (i) FEDER through the COMPETE Program and by the Portuguese Foundation for Science and Technology (FCT) in the framework of the Strategic Project PEST-C/FIS/UI607/2011 and (ii) European COST Actions MP0901-NanoTP and MP0903-NanoAlloy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. P. B. Silva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Silva, J.P.B., Sekhar, K.C., Almeida, A. et al. Influence of laser repetition rate on ferroelectric properties of pulsed laser deposited BaTiO3 films on platinized silicon substrate. Appl. Phys. A 113, 379–384 (2013). https://doi.org/10.1007/s00339-013-7948-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-013-7948-0

Keywords

Navigation