Skip to main content
Log in

Dopant size dependent variable range hopping conduction in polyaniline nanorods

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The present work investigates the electrical transport and dielectric relaxation of polyaniline (PAni) nanorods doped with organic camphorsulfonic acid (CSA) and inorganic hydrochloric acid (HCl) synthesized by interfacial polymerization technique. High resolution transmission electron micrographs (HRTEM) depict that initially spherical nuclei directionally grow into nanorods and CSA doped PAni produces more uniform and aligned structures. The electrical transport studies reveal that the CSA doped nanorods follow 1D Mott variable-range hopping (VRH), whereas the HCl doped nanorods exhibit 2D VRH conduction mechanism. The value of interchain charge transfer integral is found to be higher for smaller size HCl doped PAni than that for larger size CSA doped PAni. The resistivity measurements exhibit semiconducting behavior for both organic and inorganic dopants and the resistivity of the CSA doped nanorods is found to be smaller than that of the HCl doped nanorods. The dielectric relaxation studies suggest Debye type relaxation with a single relaxation peak for both the dopants and the relaxation time of the carriers of the CSA doped PAni nanorods is smaller than that of the HCl doped nanorods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. E. Smela, Adv. Mater. 15, 481 (2003)

    Article  Google Scholar 

  2. D.D.C. Bradley, Synth. Met. 54, 401 (1993)

    Article  Google Scholar 

  3. A.J. Heeger, S. Kivelson, J.R. Schriffer, W.P. Su, Rev. Mod. Phys. 60, 781 (1988)

    Article  ADS  Google Scholar 

  4. H.D. Tran, D. Li, R.B. Kaner, Adv. Mater. 21, 1487 (2009)

    Article  Google Scholar 

  5. M.R. Anderson, B.R. Mattes, H. Reiss, R.B. Kaner, Science 252, 1412 (1991)

    Article  ADS  Google Scholar 

  6. C. Danielle, S. Michelle, A. Ivo, Z. Aldo, Chem. Mater. 15, 4658 (2003)

    Article  Google Scholar 

  7. S.X. Xiong, Q. Wang, H.S. Xia, Mater. Res. Bull. 39, 1569 (2004)

    Article  Google Scholar 

  8. X. Li, J.Y. Shen, M.X. Wan, Z.J. Chen, Y. Wei, Synth. Met. 157, 575 (2007)

    Article  Google Scholar 

  9. L. Liang, J. Liu, C.F. Windisch Jr., G.J. Exarhos, Y.H. Lin, Angew. Chem., Int. Ed. Engl. 41, 3665 (2002)

    Article  Google Scholar 

  10. J.X. Huang, S. Virji, B.H. Weiller, R.B. Kaner, J. Am. Chem. Soc. 125, 314 (2003)

    Article  Google Scholar 

  11. I.D. Norris, M.M. Shaker, K.K. Frank, A.G. MacDiarmid, Synth. Met. 114, 109 (2000)

    Article  Google Scholar 

  12. J. Huang, R.B. Kaner, J. Am. Chem. Soc. 126, 851 (2004)

    Article  Google Scholar 

  13. B.K. Su, N. Nuraje, L. Zhang, I.W. Chu, R.M. Peetz, H. Matsui, N.L. Yang, Adv. Mater. 19, 669 (2007)

    Article  Google Scholar 

  14. M. Delvaux, J. Duchet, P.Y. Stavaux, R. Legras, S.D. Champagne, Synth. Met. 113, 275 (2000)

    Article  Google Scholar 

  15. X. Zhang, J. Zhu, N. Haldolaarachchige, J. Ryu, D.P. Young, S. Wei, Z. Guo, Polymer 53, 2109 (2012)

    Article  Google Scholar 

  16. Y.B. Moon, Y. Cao, P. Smith, A.J. Heeger, Polym. Commun. (Guildf.) 30, 196 (1989)

    Google Scholar 

  17. K. Lee, S. Cho, S.H. Park, A.J. Heeger, C.W. Lee, S.H. Lee, Nature 441, 65 (2006)

    Article  ADS  Google Scholar 

  18. S. Rajendran, O. Mahendran, R. Kannan, J. Phys. Chem. Solids 62, 303 (2002)

    Article  ADS  Google Scholar 

  19. S.A. Chen, H.T. Lee, Macromolecules 28, 2858 (1995)

    Article  ADS  Google Scholar 

  20. B.J. Kim, S.G. Oh, M.G. Han, S.S. Im, Synth. Met. 122, 297 (2001)

    Article  Google Scholar 

  21. A. Tursun, X.-G. Zhang, J. Ruxangul, Mater. Chem. Phys. 90, 367 (2005)

    Article  Google Scholar 

  22. R. Menon, C.O. Yoon, D. Moses, A.J. Heeger, Y. Cao, Phys. Rev. B 48, 17685 (1993)

    Article  ADS  Google Scholar 

  23. M. Ghosh, A. Barman, S.K. De, S. Chatterjee, J. Appl. Phys. 84, 806 (1998)

    Article  ADS  Google Scholar 

  24. M. Wan, J. Li, J. Polym. Sci., Part A, Polym. Chem. 37, 4605 (1999)

    Article  ADS  Google Scholar 

  25. N.F. Mott, E.A. David, Electronic Processes in Noncrystalline Materials (Oxford University Press, Oxford, 1979), pp. 32–34

    Google Scholar 

  26. C.O. Yoon, M. Reghu, D. Moses, A.J. Heeger, Y. Cao, T.-A. Chen, X. Wu, R.D. Rieke, Synth. Met. 75, 229 (1995)

    Article  Google Scholar 

  27. J.P. Pouget, Z. Oblakowski, Y. Nogami, P.A. Albouy, M. Laridjani, E.J. Oh, Y. Min, A.G. MacDiarmid, J. Tsukamoto, T. Ishiguro, A.J. Epstein, Synth. Met. 65, 131 (1994)

    Article  Google Scholar 

  28. E.M. Conwell, H.Y. Choi, S. Jeyadev, Synth. Met. 49, 359 (1992)

    Article  Google Scholar 

  29. B.I. Shklovskii, A.L. Efros, Electronic Properties of Doped Semiconductor (Springer, New York, 1984), pp. 202–205

    Google Scholar 

  30. O. Ganor, Y. Lereah, R.L. Rosenbaum, Phys. Rev. B 39, 8765 (1989)

    Article  ADS  Google Scholar 

  31. M. Camposy, B.B. Jrz, J. Phys. D, Appl. Phys. 30, 1531 (1997)

    Article  ADS  Google Scholar 

  32. R.C. Che, L.M. Peng, X.F. Duan, Q. Chen, X.L. Liang, Adv. Mater. 16, 401 (2004)

    Article  ADS  Google Scholar 

  33. H.H.S. Javadi, F. Zuo, K.R. Cromack, M. Angelopoulos, A.G. MacDiarmid, A.J. Epstein, Synth. Met. 29, 409 (1989)

    Article  Google Scholar 

  34. S. Havriliak, S. Negami, Polymer 8, 161 (1967)

    Article  Google Scholar 

  35. A.K. Jonscher, J. Phys. D, Appl. Phys. 32, 57 (1999)

    Article  ADS  Google Scholar 

  36. S.A. Chen, C.S. Liao, Macromolecules 26, 2810 (1993)

    Article  ADS  Google Scholar 

  37. C.H. Ho, C.D. Liu, C.H. Hsieh, S.N. Lee, Synth. Met. 158, 630 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the UGC-DAE-CSR for their financial support through project No. CSR-I/CRS-50/50. The Electron Microscopy division SAIF, NEHU is also acknowledged for the HRTEM results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Kumar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chutia, P., Nath, C. & Kumar, A. Dopant size dependent variable range hopping conduction in polyaniline nanorods. Appl. Phys. A 115, 943–951 (2014). https://doi.org/10.1007/s00339-013-7903-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-013-7903-0

Keywords

Navigation