Skip to main content
Log in

Annealing-induced changes of the 3.31 eV emission in ZnO nanorods

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The effect of annealing on the 3.31 eV (A line) emission in ZnO nanorods is studied in detail by temperature-dependent photoluminescence (PL). Annealing results in obvious changes in peak energy and lineshape of the A line, indicating different luminescence origin in the as-grown and annealed ZnO nanorods. In the as-grown nanorods, the A line is a result of competition between free-to-neutral acceptor (FA) transition and the first longitude optical phonon replica of free exciton (FX-1LO) recombination. While for the annealed nanorods, FA transition disappears and the A line is attributed to FX-1LO only. In combination with trace impurity analysis, the results allow us to conclude that the acceptor involved in the FA transition is stacking faults rather than unintentional acceptor impurities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Z.L. Wang, Chin. Sci. Bull. 54, 4021 (2009)

    Article  Google Scholar 

  2. B.K. Meyer, H. Alves, D.M. Hofmann, W. Kriegseis, D. Forster, F. Bertram, J. Christen, A. Hoffmann, M. Straßburg, M. Dworzak, U. Haboeck, A.V. Rodina, Phys. Status Solidi B, Basic Solid State Phys. 241, 231 (2004)

    Article  ADS  Google Scholar 

  3. B.K. Meyer, J. Sann, S. Lautenschläger, M.R. Wagner, A. Hoffmann, Phys. Rev. B 76, 184120 (2007)

    Article  ADS  Google Scholar 

  4. M.R. Wagner, G. Callsen, J.S. Reparaz, J.H. Schulze, R. Kirste, M. Cobet, I.A. Ostapenko, S. Rodt, C. Nenstiel, M. Kaiser, A. Hoffmann, A.V. Rodina, M.R. Phillips, S. Lautenschläger, S. Eisermann, B.K. Meyer, Phys. Rev. B 84, 035313 (2011)

    Article  ADS  Google Scholar 

  5. H.P. He, H.P. Tang, Z.Z. Ye, L.P. Zhu, B.H. Zhao, L. Wang, X.H. Li, Appl. Phys. Lett. 90, 023104 (2007)

    Article  ADS  Google Scholar 

  6. H.J. Zhou, J. Fallert, J. Sartor, R.J.B. Dietz, C. Klingshirn, H. Kalt, D. Weissenberger, D. Gerthsen, H.B. Zeng, W.P. Cai, Appl. Phys. Lett. 92, 132112 (2008)

    Article  ADS  Google Scholar 

  7. M. Schirra, R. Schneider, A. Reiser, G.M. Prinz, M. Feneberg, J. Biskupek, U. Kaiser, C.E. Krill, K. Thonke, R. Sauer, Phys. Rev. B 77, 125215 (2008)

    Article  ADS  Google Scholar 

  8. D. Tainoff, B. Masenelli, P. Mélinon, A. Belsky, G. Ledoux, D. Amans, C. Dujardin, N. Fedorov, P. Martin, Phys. Rev. B 81, 115304 (2010)

    Article  ADS  Google Scholar 

  9. H.P. He, S.L. Li, L.W. Sun, Z.Z. Ye, Phys. Chem. Chem. Phys. 15, 7484 (2013)

    Article  Google Scholar 

  10. A. Yamamoto, K. Miyajima, T. Goto, J. Appl. Phys. 90, 4973 (2001)

    Article  ADS  Google Scholar 

  11. B.P. Zhang, N.T. Binh, Y. Segawa, Y. Kashiwaba, K. Haga, Appl. Phys. Lett. 84, 586 (2004)

    Article  ADS  Google Scholar 

  12. S.W. Kim, S. Fujita, S. Fujita, Appl. Phys. Lett. 86, 153119 (2005)

    Article  ADS  Google Scholar 

  13. P. Corfdir, M. Abid, A. Mouti, P.A. Stadelmann, E. Papa, J.P. Ansermet, J.D. Ganière, B. Deveaud-Plédran, Nanotechnology 22, 285710 (2011)

    Article  Google Scholar 

  14. H.P. He, Q. Yang, C. Liu, L.W. Sun, Z.Z. Ye, J. Phys. Chem. C 115, 58 (2011)

    Article  Google Scholar 

  15. L.J. Wang, N.C. Giles, J. Appl. Phys. 94, 973 (2003)

    Article  ADS  Google Scholar 

  16. S.S. Kurbanov, T.W. Kang, J. Lumin. 130, 767 (2010)

    Article  Google Scholar 

  17. D.C. Look, B.B. Claflin, G. Cantwell, S.J. Park, G.M. Renlund, Zinc oxide—a material for micro- and optoelectronic applications, in NATO Science Series, Series II: Mathematics, Physics and Chemistry, vol. 194 (2005), pp. 37–46

    Google Scholar 

  18. S.H. Lee, J.S. Lee, W.B. Ko, J.I. Sohn, S.N. Cha, J.M. Kim, Y.J. Park, J.P. Hong, Appl. Phys. Express 5, 095002 (2012)

    Article  ADS  Google Scholar 

  19. S.S. Lin, J.G. Lu, Z.Z. Ye, H.P. He, X.Q. Gu, L.X. Chen, J.Y. Huang, B.H. Zhao, Solid State Commun. 148, 25 (2008)

    Article  ADS  Google Scholar 

  20. F.X. Xiu, Z. Yang, L.J. Mandalapu, D.T. Zhao, J.L. Liu, Appl. Phys. Lett. 87, 252102 (2005)

    Article  ADS  Google Scholar 

  21. S. Lautenschlaeger, S. Eisermann, G. Haas, E.A. Zolnowski, M.N. Hofmann, A. Laufer, M. Pinnisch, B.K. Meyer, M.R. Wagner, J.S. Reparaz, G. Callsen, A. Hoffmann, A. Chernikov, S. Chatterjee, V. Bornwasser, M. Koch, Phys. Rev. B 85, 235204 (2012)

    Article  ADS  Google Scholar 

  22. S.S. Kurbanov, G.N. Panin, T.W. Kang, Appl. Phys. Lett. 95, 211902 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Dr. Chunli Dai (Institute of Metal Research, Chinese Academy of Sciences) for her assistance in SIMS measurements. This work was supported by Natural Science Foundation of China under Grant No. 51172204, and the Fundamental Research Funds for the Central Universities under Grant No. 2012FZA4009.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haiping He.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, L., He, H., Li, S. et al. Annealing-induced changes of the 3.31 eV emission in ZnO nanorods. Appl. Phys. A 115, 879–883 (2014). https://doi.org/10.1007/s00339-013-7883-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-013-7883-0

Keywords

Navigation