Skip to main content
Log in

Thermal annealing studies of the deep level emission in solution-grown zinc oxide nanorods

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this report, the effects of thermal annealing on the room temperature (RT) photoluminescence characteristics of solution-grown ZnO nanorods (ZNs) are presented. It is shown that the near surface regions of as-grown ZNs are rich in Zn. Within the detection limit of X-ray photoelectron spectroscopy (XPS), it is confirmed that the environment of annealing affects indeed the activation of intrinsic defects. Furthermore, thermal treatment at high temperatures removes H-related defects as expected; and this removal process is found to affect significantly the RT luminescence properties of ZNs, especially when ZNs are annealed sequentially from 300 °C to ~700 °C. Specifically, the passivation of vacancy-related defects by H is demonstrated following thermal treatment in this temperature range. Finally, the green luminescence (~500 nm) that evolves following annealing above ~800 °C is assigned to Zn vacancy defects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A. Umar, M.M. Rahman, S.H. Kim, Y.B. Hahn, “ZnO nanonails: synthesis and their application as glucose biosensor”. J. Nanosci. Nanotechnol. 8, 3216 (2008)

    Article  Google Scholar 

  2. S. Al-Hill, M. Willander, “Membrane potential measurements across a human fat cell using ZnO nanorods”. Nanotechnol. 20, 175103 (2009)

    Article  ADS  Google Scholar 

  3. J.C. Johnson, H.J. Choi, K.P. Knutsen, R.D. Schaller, P. Yang, R.J. Saykally, “Single gallium nitride nanowire lasers”. Nat. Mater. 1, 106 (2002)

    Article  ADS  Google Scholar 

  4. A.B. Greytak, C.J. Barrelet, Y. Li, C.M. Lieber, “Semiconductor nanowire laser and nanowire waveguide electro-optic modulators”. Appl. Phys. Lett. 87, 151103 (2005)

    Article  ADS  Google Scholar 

  5. M. Law, D.J. Sirbuly, J.C. Johnson, J. Goldberger, R.J. Saykally, P. Yang, “Nanoribbon waveguides for subwavelength photonics integration”. Sci. 305, 1269 (2004)

    Article  ADS  Google Scholar 

  6. H. Zhang, J.B. Wu, C.X. Zhai, N. Du, X.Y. Ma, D.R. Yang, “From ZnO nanorods to 3D hollow microhemispheres: solvothermal synthesis, photoluminescence and gas sensor properties”. Nanotechnol. 18, 455604 (2007)

    Article  ADS  Google Scholar 

  7. K. Talla, J.K. Dangbegnon, M.C. Wagener, J. Weber, J.R. Botha, “Effect of growth parameters on MgxZn(1-x)O films grown by metalorganic chemical vapour deposition”. J. Cryst. Growth 315, 297 (2011)

    Article  ADS  Google Scholar 

  8. L. Pavesi, “Silicon-based light sources for silicon integrated circuits”. Adv. Opt. Technol. 2008, 1 (2008)

    Article  Google Scholar 

  9. F.E. Dart, “Evaporation of zinc and zinc oxide under electron bombardment”. Phys. Rev. 78, 761 (1950)

    Article  ADS  Google Scholar 

  10. T.M. Børseth, B.G. Svensson, A.Y. Kuznetsov, P. Klason, Q.X. Zhao, M. Willander, “Identification of oxygen and zinc vacancy optical signals in ZnO”. Appl. Phys. Lett. 89, 262112 (2006)

    Article  ADS  Google Scholar 

  11. K.E. Knutsen, A. Galeckas, A. Zubiaga, F. Tuomisto, G.C. Farlow, B.G. Svensson, A.Y. Kuznetsov, “Zinc vacancy and oxygen interstitial in ZnO revealed by sequential annealing and electron irradiation”. Phys. Rev. B 86, 121203 (2012)

    Article  ADS  Google Scholar 

  12. Z. Fang, Y. Wang, D. Xu, Y. Tan, X. Liu, “Blue luminescent center in ZnO films deposited on silicon substrates”. Optical Mat. 26, 239 (2004)

    Article  ADS  Google Scholar 

  13. C.M. Mbulanga, Z.N. Urgessa, S.R. Tankio Djiokap, J.R. Botha, M.M. Duvenhage, H.C. Swart, “Surface characterization of ZnO nanorods grown by chemical deposition”. Phys. B 480, 42 (2015)

    Article  ADS  Google Scholar 

  14. Z.N. Urgessa, C.M. Mbulanga, S.R. Tankio Djiokap, J.R. Botha, M.M. Duvenhage, H.C. Swart, “The defect passivation effect of hydrogen on the optical properties of solution-grown ZnO nanorods”. Phys. B 480, 48 (2015)

    Article  ADS  Google Scholar 

  15. A.F. Kohan, G. Ceder, D. Morgan, “First principles study of native point defects in ZnO”. Phys. Rev. B 61, 15019 (2000)

    Article  ADS  Google Scholar 

  16. Z.M. Liao, H.Z. Zhang, Y.B. Zhou, J. Xua, J.M. Zhang, D.P. Yu, “Surface effects on photoluminescence of single ZnO nanowires”. Phy. Lett. A 372, 4505 (2008)

    Article  ADS  MATH  Google Scholar 

  17. I. Shalish, H. Temkin, V. Narayanamurti, “Size-dependent surface luminescence in ZnO nanowires”. Phys. Rev. B 69, 245401 (2004)

    Article  ADS  Google Scholar 

  18. A. Dev, R. Niepelt, J.P. Richters, C. Ronning, T. Voss, “Stable enhancement of near-band-edge emission of ZnO nanowires by hydrogen incorporation”. Nanotechnology 21, 065709 (2010)

    Article  ADS  Google Scholar 

  19. E.V. Lavrov, F. Herklotz, J. Weber, “Identification of two hydrogen donors in ZnO”. Phys. Rev. B 79, 165210 (2009)

    Article  ADS  Google Scholar 

  20. J.J. Dong, X.W. Zhang, J.B. You, P.F. Cai, Z.G. Yin, Q. An, X.B. Ma, P. Jin, Z.G. Wang, P.K. Chu, “Effects of hydrogen plasma treatment on the electrical and optical properties of ZnO films: identification of hydrogen donors in ZnO”. Appl. Mater. Interface 2, 1780 (2010)

    Article  Google Scholar 

  21. F. Herklotz, E.V. Lavrov, J. Weber, “Photoluminescence study of hydrogen donors in ZnO”. Phys. B 404, 4349 (2009)

    Article  ADS  Google Scholar 

  22. Y.M. Strzhemechny, J. Nemergut, P.E. Smith, J. Bae, D.C. Look, “Remote hydrogen plasma processing of ZnO single crystal surfaces”. J. Appl. Phys. 94, 4256 (2003)

    Article  ADS  Google Scholar 

  23. M.-H. Du, K. Biswas, “Anionic and hidden hydrogen in ZnO”, Phys. Rev. Lett., 106, 115502 (2011)

    Article  ADS  Google Scholar 

  24. Z.N. Urgessa, J.R. Botha, M.O. Eriksson, C.M. Mbulanga, S.R. Dobson, S.R. Tankio Djiokap, K.F. Karlsson, V. Khranovskyy, R. Yakinova, P.-O. Holtz, “Low temperature near band edge recombination dynamics in ZnO nanorods”. J. Appl. Phys. 116, 123506 (2014)

    Article  ADS  Google Scholar 

  25. D.-H. Kim, G.-W. Lee, Y.-C. Kim, “Interaction of zinc interstitial with oxygen vacancy in zinc oxide, An origin of n-type doping”. Solid State Commun. 152, 1711 (2012)

    Article  ADS  Google Scholar 

  26. G.A. Shi, M. Saboktakin, M. Stavola, S.J. Pearton, “Hidden hydrogen in as-grown ZnO”. Appl. Phys. Lett. 85, 5601 (2004)

    Article  ADS  Google Scholar 

  27. M.D. Mc Cluskey, S.J. Jokela, K.K. Zhuravlev, P.J. Simpson, K.G. Lynn, “Infrared spectroscopy of hydrogen in ZnO”. Appl. Phys. Lett. 81, 3807 (2002)

    Article  ADS  Google Scholar 

  28. International zinc association, Zinc. http://www.zinc.org/basics/zinc_properties. Accessed 25 May 2015

  29. Z. Wang, S.C. Su, M. Younas, F.C.C. Ling, W. Anwand, A. Wagner, “The Zn-vacancy related green luminescence and donor–acceptor pair emission in ZnO grown by pulsed laser deposition”. R. Soc. Chem. (RSC Adv.) 5, 12530 (2015)

    Google Scholar 

Download references

Acknowledgements

This work is based upon research supported by the South Africa Research Chairs Initiative of the Department of Science and Technology and the National Research Foundation (NRF), South Africa. The financial support from Nelson Mandela Metropolitan University (NMMU) is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Crispin Munyelele Mbulanga.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mbulanga, C.M., Urgessa, Z.N., Tankio Djiokap, S.R. et al. Thermal annealing studies of the deep level emission in solution-grown zinc oxide nanorods. Appl. Phys. A 123, 129 (2017). https://doi.org/10.1007/s00339-017-0755-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-0755-2

Keywords

Navigation