Skip to main content
Log in

Chemical changes induced by ultrasound in iron

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The focus of this work is a careful chemical investigation of structural damage produced by the exposure of an iron bar to pressure waves generated using an ultrasound machine (called the R-1-S reactor).

In addition to the emission of neutron bursts, the ultrasound treatment caused the appearance of zones of macroscopic damage (∼1 mm in size) on the exterior of the bar. Reflected-light optical and environmental scanning electron microscopy (ESEM) has shown that these external damage zones are characterized by microcraters and are covered by a thin layer of cracked amorphous material. Under back scattered electron (BSE) observation, this material shows a lower brightness than the intact ferrite surface. In addition, a zone with a high density of deformed cavities (∼1300 per mm2) with irregular walls and a maximum size of 10 μm was found inside the bar. These deformed microcavities are partially filled with a material composed of a chaotic assemblage of submicron-sized (most likely amorphous) particles.

A careful compositional investigation of the chaotic material inside the microcavities using the semi-quantitative data obtained with the ESEM X-ray Energy Dispersive System (EDS) has shown that it is primarily composed of carbon, manganese and chromium. These elements are also found in lower amounts within the intact ferrite matrix. In contrast, the damaged surface surrounding the craters is characterized by elements not found in the ferrite at all (i.e., O, Cl, K, Cu); elements the presence of which cannot be attributed to the occurrence of non-metallic inclusions or to contamination during fabrication.

These results are also difficult to explain using the generally accepted laws of physics; however, they do appear to agree with a recent theory predicting the deformation of the local spacetime and the violation of the Local Lorentz Invariance. Such a violation should occur following the collapse of micron-sized discontinuities internal to the materials (micropores) exposed to ultrasonic pressure waves resulting in an energy density to time ratio large enough to overcome the threshold predicted by the deformed spacetime theory, triggering, in this way, a new kind of nuclear reaction. Following this theory, the C-, Mn- and Cr-rich chaotic material inside the microcavities is the product of the spherically symmetrical collapse of micropores internal to the ferrite while the presence of new elements within the cratered damage zones on the ferrite surface can be attributed to the catastrophic collapse of the subsurface pore walls resulting from microexplosions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. A. Carpinteri, F. Cardone, G. Lacidogna, Strain 45, 332–339 (2009)

    Article  Google Scholar 

  2. F. Cardone, A. Carpinteri, G. Lacidogna, Phys. Lett. A 373, 4158–4163 (2009)

    Article  ADS  Google Scholar 

  3. F. Cardone, V. Calbucci, G. Albertini, J. Adv. Phys. 2, 20–24 (2013)

    Article  Google Scholar 

  4. F. Cardone, R. Mignani, A. Petrucci, J. Adv. Phys. 1, 1–34 (2012)

    Google Scholar 

  5. F. Cardone, R. Mignani, Energy and Geometry (World Scientific, Singapore, 2004)

    MATH  Google Scholar 

  6. F. Cardone, R. Mignani, Deformed Spacetime (Springer, Berlin, 2007)

    Book  MATH  Google Scholar 

  7. F. Cardone, G. Cherubini, A. Petrucci, Phys. Lett. A 373, 862–866 (2009)

    Article  ADS  Google Scholar 

  8. F. Cardone, G. Cherubini, R. Mignani, W. Perconti, A. Petrucci, F. Rosetto, G. Spera, Ann. Fond. Louis Broglie 34, 183–207 (2009)

    Google Scholar 

  9. F. Cardone, R. Mignani, A. Petrucci, Phys. Lett. A 373, 1956–1958 (2009)

    Article  ADS  Google Scholar 

  10. F. Cardone, R. Mignani, M. Monti, A. Petrucci, V. Sala, Mod. Phys. Lett. A 27(18), 1250102 (2012). doi:10.1142/S0217732312501027

    Article  ADS  Google Scholar 

  11. F. Ridolfi, F. Cardone, G. Albertini, J. Adv. Phys. 2, 40–44 (2013)

    Article  Google Scholar 

  12. “Dispositivo e metodo per rilasciare neutroni”, application number MI2010A001263. http://nuovonucleare.altervista.org/neutronidai-solidi-brevetto

  13. F. Ridolfi, A. Renzulli, R. Macdonald, B.G.J. Upton, Lithos 91, 373–392 (2006)

    Article  ADS  Google Scholar 

  14. http://www.kaker.com/inclusions/demo/html/a_index.html

  15. K. Kanaya, S. Okayama, J. Phys. D, Appl. Phys. 5, 43 (1972). doi:10.1088/0022-3727/5/1/308

    Article  ADS  Google Scholar 

  16. C.H. Langmuir, R.D. Vocke Jr., G.N. Hanson, S.R. Hart, Earth Planet. Sci. Lett. 37, 380–392 (1978)

    Article  ADS  Google Scholar 

  17. D. Harlov, A. Renzulli, F. Ridolfi, Eur. J. Mineral. 18, 233–241 (2006)

    Article  Google Scholar 

  18. P.W. Bridgman, Phys. Rev. 29, 188–191 (1927)

    Article  ADS  Google Scholar 

  19. F. Cardone, R. Mignani, Int. J. Mod. Phys. E 15, 911–924 (2006)

    Article  ADS  Google Scholar 

  20. L.I. Urutskoev, V.I. Liksonov, V.G. Tsinoev, Appl. Phys. (Russia) 4, 83 (2000). Ann. Fond. L. de Broglie. 27, 701 (2002)

    Google Scholar 

  21. V.D. Kuznetsov, G.V. Myshinskii, V.I. Zhemennik, V.I. Arbuzov, in Proc. 8-th Russ. Conf. on the Cold Transmutation of Nuclei of Chemical Elements, Moscow (2001), p. 308

    Google Scholar 

  22. A.G. Volkovich, A.P. Govorun, A.A. Gulyaev, S.V. Zhukov, V.L. Kuznetsov, A.A. Rukhadze, A.V. Steblevskii, L.I. Urutskoev, Bull. Lebedev Phys. Inst. 8 (2002)

Download references

Acknowledgements

The realization of this article was made possible by the support of A. Renzulli, G. Fattorini and A. Rotili. Special thanks go to W. Sala (Startec Ltd. administrator) for supplying the iron bar. We would also like to thank ASP, American Scientific Publishers, for granting permission to reprint Figs. 3 and 4 (from Ref. [11], Ridolfi F., Cardone F., Albertini G. Ultrasonic Damage in Iron, Journal of Advanced Physics, 2013, Vol. 2, 40–44. Copyright© American Scientific Publishers).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Ridolfi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Albertini, G., Calbucci, V., Cardone, F. et al. Chemical changes induced by ultrasound in iron. Appl. Phys. A 114, 1233–1246 (2014). https://doi.org/10.1007/s00339-013-7876-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-013-7876-z

Keywords

Navigation