Skip to main content
Log in

Structural and optical properties of non-polar ZnO/Zn0.81Mg0.19O multiple quantum wells grown on \(r\)-plane sapphire substrates by plasma-assisted molecular beam epitaxy

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

This work investigates the structural and optical properties of non-polar ZnO/Zn0.81Mg0.19O multiple quantum wells (MQWs), which have been prepared on \(r\)-plane sapphire substrates by plasma-assisted molecular beam epitaxy (MBE). The MQWs are (\(11\bar{2}0\)) oriented (\(a\)-plane) as identified by the X-ray diffraction pattern. Structural properties are anisotropic and surfaces of MQWs show stripes running along the ZnO \(c\)-axis direction. Sharp interfaces between the well layers and barrier layers can be clearly resolved by the secondary ion mass spectroscopy (SIMS) analysis. The room-temperature photoluminescence (PL) resulting from the well regions exhibits a significant blueshift with respect to ZnO single layer. Exciton emission in the ZnO QW is resolved into two components in the temperature dependence of the PL spectra. Two types of excitons are responsible for this feature. The excitons trapped by the potential minima dominate at low temperature, and the excitons localized in the “free exciton states” dominate at relatively high temperature. An activation energy of 7.3 meV for quenching of the exciton emission is in good agreement with the transition of the two types of excitons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ü. Özgür, Ya.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Doğan, V. Avrutin, S.J. Cho, H. Morkoç, J. Appl. Phys. 98, 041301 (2005)

    Article  ADS  Google Scholar 

  2. X.H. Pan, J. Jiang, Y.J. Zeng, H.P. He, L.P. Zhu, Z.Z. Ye, B.H. Zhao, X.Q. Pan, J. Appl. Phys. 103, 023708 (2008)

    Article  ADS  Google Scholar 

  3. W.I. Park, G.-C. Yi, H.M. Jang, Appl. Phys. Lett. 79, 2022 (2001)

    Article  ADS  Google Scholar 

  4. N.B. Chen, C.H. Sui, Mater. Sci. Eng. B 126, 16 (2006)

    Article  Google Scholar 

  5. T. Makino, Y. Segawa, M. Kawasaki, H. Koinuma, Semicond. Sci. Technol. 20, S78 (2005)

    Article  ADS  Google Scholar 

  6. X.Q. Gu, L.P. Zhu, Z.Z. Ye, H.P. He, Y.Z. Zhang, F. Huang, M.X. Qiu, Y.J. Zeng, Appl. Phys. Lett. 91, 022103 (2007)

    Article  ADS  Google Scholar 

  7. P. Misra, T.K. Sharma, S. Porwal, L.M. Kukreja, Appl. Phys. Lett. 89, 161912 (2006)

    Article  ADS  Google Scholar 

  8. H.D. Sun, T. Makino, Y. Segawa, M. Kawasaki, A. Ohtomo, K. Tamura, H. Koinuma, J. Appl. Phys. 91, 1993 (2002)

    Article  ADS  Google Scholar 

  9. M. Al-Suleiman, A. El-Shaer, A. Bakin, H.H. Wehmann, A. Waag, Appl. Phys. Lett. 91, 081911 (2007)

    Article  ADS  Google Scholar 

  10. J.W. Sun, B.P. Zhang, Nanotechnology 19, 485401 (2008)

    Article  Google Scholar 

  11. C. Morhain, T. Bretagnon, P. Lefebvre, X. Tang, P. Valvin, T. Guillet, B. Gil, T. Taliercio, M. Teisseire-Doninelli, B. Vinter, C. Deparis, Phys. Rev. B 72, 241305 (2005)

    Article  ADS  Google Scholar 

  12. B.P. Zhang, B.L. Liu, J.Z. Yu, Q.M. Wang, C.Y. Liu, Y.C. Liu, Y. Segawa, Appl. Phys. Lett. 90, 132113 (2007)

    Article  ADS  Google Scholar 

  13. S.-H. Park, D. Ahn, Appl. Phys. Lett. 87, 253509 (2005)

    Article  ADS  Google Scholar 

  14. J.-M. Chauveau, D.A. Buell, M. Laügt, P. Vennègués, M. Teisseire-Doninelli, S. Berard-Bergery, C. Deparis, B. Lo, B. Vinter, C. Morhain, J. Cryst. Growth 301, 366 (2007)

    Article  ADS  Google Scholar 

  15. T.S. Ko, T.C. Lu, L.F. Zhuo, W.L. Wang, M.H. Liang, H.C. Kuo, S.C. Wang, L. Chang, D.Y. Lin, J. Appl. Phys. 108, 073504 (2010)

    Article  ADS  Google Scholar 

  16. Y. Li, X.H. Pan, Y.Z. Zhang, H.P. He, J. Jiang, J.Y. Huang, C.L. Ye, Z.Z. Ye, J. Appl. Phys. 112, 103519 (2012)

    Article  ADS  Google Scholar 

  17. J.-M. Chauveau, M. Teisseire, H. Kim-Chauveau, C. Deparis, C. Morhain, B. Vinter, Appl. Phys. Lett. 97, 081903 (2010)

    Article  ADS  Google Scholar 

  18. G. Tabares, A. Hierro, B. Vinter, J.-M. Chauveau, Appl. Phys. Lett. 99, 071108 (2011)

    Article  Google Scholar 

  19. L. Béaur, T. Bretagnon, C. Brimont, T. Guillet, B. Gil, D. Tainoff, M. Teisseire, J.-M. Chauveau, Appl. Phys. Lett. 98, 101913 (2011)

    Article  ADS  Google Scholar 

  20. L. Béaur, T. Bretagnon, B. Gil, A. Kavokin, T. Guillet, C. Brimont, D. Tainoff, M. Teisseire, J.-M. Chauveau, Phys. Rev. B 84, 165312 (2011)

    Article  ADS  Google Scholar 

  21. P. Ding, X.H. Pan, J.Y. Huang, B. Lu, H.H. Zhang, W. Chen, Z.Z. Ye, Mater. Lett. 71, 18 (2012)

    Article  Google Scholar 

  22. H.D. Sun, Y. Segawa, M. Kawasaki, A. Ohtomo, K. Tamura, H. Koinuma, J. Appl. Phys. 91, 6457 (2002)

    Article  ADS  Google Scholar 

  23. T. Makino, Superlattices Microstruct. 38, 231 (2005)

    Article  ADS  Google Scholar 

  24. A. Zrenner, L.Y. Butov, M. Hagn, G. Abstreiter, G. Böhm, G. Weimann, Phys. Rev. Lett. 72, 21 (1994)

    Article  Google Scholar 

  25. T. Makino, C.H. Chia, N.T. Tuan, H.D. Sun, Y. Segawa, M. Kawasaki, A. Ohtomo, K. Tamura, H. Koinuma, Appl. Phys. Lett. 77, 975 (2000)

    Article  ADS  Google Scholar 

  26. M. Leroux, N. Grandjean, B. Beaumont, G. Nataf, F. Semond, J. Massies, P. Gibart, J. Appl. Phys. 86, 3721 (1999)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China under Grant Nos. 51172204 and 51002134, Zhejiang Provincial Public Technology Research of China under Grant No. 2012C21114, Zhejiang Provincial Natural Science Foundation of China under Grant No. LQ13E020001, and Doctoral Fund of Ministry of Education of China under Grant No. 2011010110013.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to X. H. Pan or Z. Z. Ye.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

339_2013_7865_MOESM1_ESM.pdf

Structural and optical properties of non-polar ZnO/Zn\(_{0}.81\)Mg0.19O multiple quantum wells grown on \(r\)-plane sapphire substrates by plasma-assisted molecular beam epitaxy (PDF 1.7 MB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, W., Pan, X.H., Zhang, H.H. et al. Structural and optical properties of non-polar ZnO/Zn0.81Mg0.19O multiple quantum wells grown on \(r\)-plane sapphire substrates by plasma-assisted molecular beam epitaxy. Appl. Phys. A 115, 817–821 (2014). https://doi.org/10.1007/s00339-013-7865-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-013-7865-2

Keywords

Navigation