Skip to main content

Photoluminescence Processes in ZnO Thin Films and Quantum Structures

  • Chapter
  • First Online:
ZnO Nanocrystals and Allied Materials

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 180))

Abstract

ZnO, a well-known direct and wide bandgap semiconductor is found to show intricate photoluminescence (PL) spectra in thin films and quantum structures such as quantum wells and quantum dots (QDs). In ZnO, thin films grown on sapphire substrates using pulsed laser deposition (PLD) an intense PL in the UV region at about 3.35 eV was observed, which corresponded to near band-edge emission due to the excitonic recombinations. The deep level emission in the visible spectral region of 2–3 eV, which is found to be due to off stoichiometry of the ZnO films, i.e., oxygen vacancies, zinc interstitial, and other structural defects, was almost negligible compared to the near band-edge emission. The strong near band-edge emission in UV spectral region was found to have fine structures consisting of various peaks mainly due to donor and acceptor bound excitons and their phonon replicas, which changed their position and intensity with temperature. In ZnO/Mg x Zn1−x O multi-quantum wells (MQWs) with well layer thickness in the range of ~4 to 1 nm on (0001) sapphire substrates also grown using PLD under the optimized conditions, we observed size-dependent blue shift in ZnO bandgap due to the quantum confinement effect. The PL spectra of these ZnO MQWs recorded at 10 K showed that line width of the PL peaks increased with decreasing well layer thickness, which was attributed to fluctuations in the well layer thickness. The temperature-dependent PL peak positions for the MQWs were found to shift gradually toward red end of the spectrum with increase in temperature up to 300 K due to the temperature-dependent thermal expansion/dilation of the lattice and carrier-phonon scattering. This dependance was found to be consistent with the well-known Varshni’s empirical relation. Ensembles of alumina capped ZnO quantum dots (ZQDs) also grown using pulsed laser deposition with mean radii comparable to and smaller than the pertinent excitonic Bohr radius (~2.34 nm), called ultra-small QDs showed size-dependent optical absorption edges. These absorption spectra were found to be consistent with the strong confinement model, in which the confinement energy and Coulombic interaction energy of the localized electron-hole pairs are taken to be significantly higher than their correlation energy and the optical transitions are perceived to be non-excitonic in nature. In PL spectra of such ZQDs of mean radius of ~2.3 nm at temperatures of ~6 K and above the primary recombinations were found to be due to the surface bound and Al donor bound electron-hole pairs. The near band-edge recombination peaks of the PL spectra appeared at the sample temperature of ~70 K and beyond. These peaks were found to be ~166 meV Stoke and/or thermally red shifted with respect to the experimentally observed absorption edge. Almost all the PL spectra of the ZQDs at different temperatures showed the LO and 2 LO phonon replicas of the primary transitions, which suggests strong coupling between the recombining charge carriers and the LO phonons. The temperature-dependent spectral positions of the PL peaks for the ZQDs also followed the above stated Varshni’s relation with fitting parameters close to that of the bulk ZnO. The intensity of the PL peaks was found to follow the normal mechanism of thermal quenching which could be fitted with the Arrhenius type of equation having activation energy of ~10 meV. Temperature dependence of FWHM of the PL peaks when fitted with the Hellmann and O’Neill models did not result in a close match. Although one could estimate a value of the carrier-LO phonon coupling coefficient of ~980 meV from this fit, but this was found to be much higher than that reported earlier for the ZQDs. These studies are expected to provide deeper insight into the basic optical processes in ZnO thin films, quantum wells, and QDs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ü. Özgür, Ya.I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doðan, V. Avrutin, S.-J. Cho, H. Morkoç, J. Appl. Phys. 98, 041301 (2005)

    Google Scholar 

  2. C. Klingshirn, Chem. Phys. Chem. 8, 782 (2007)

    Article  Google Scholar 

  3. A. Tsukazaki, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S.F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma, M. Kawasaki, Nat. Mater. 4, 42 (2005)

    Article  ADS  Google Scholar 

  4. Y.R. Ryu, T.S. Lee, J.A. Lubguban, H.W. White, Y.S. Park, C.J. Youn, Appl. Phys. Lett. 87, 153, 504 (2005)

    Google Scholar 

  5. W.I. Park, J.S. Kim, G.-C. Yi, H.-J. Lee, Adv. Mater. 17, 1393 (2005)

    Article  Google Scholar 

  6. P. Misra, A.K. Das, L.M. Kukreja, Phys. Status Solidi C 7(6), 1718 (2010)

    Article  ADS  Google Scholar 

  7. P. Sharma, A. Mansingh, K. Sreenivas, Appl. Phys. Lett. 80, 553 (2002)

    Google Scholar 

  8. A. Mang, K. Reimann, St. Rubenacke, Solid State Commun. 94, 251 (1995)

    Google Scholar 

  9. A.Y. Polyakov, N.B. Smirnov, A.V. Govorkov, E.A. Kozhukhova, V.I. Vdovin, K. Ip, M.E. Overberg, Y.W. Heo, D.P. Norton, S.J. Pearton, J.M. Zavada, J. Appl. Phys. 94, 2895 (2003)

    Article  ADS  Google Scholar 

  10. S.O. Kucheyev, J.S. Williams, C. Jagadish, J. Zou, C. Evans, A.J. Nelson, A.V. Hamza, Phys. Rev. B 67, 094115 (2003)

    Article  ADS  Google Scholar 

  11. V.A. Coleman, C. Jagadish, Basic Properties and Applications of ZnO, in Zinc Oxide Bulk, Thin Films and Nanostructures: Processing, Properties, and Applications, ed. by C. Jagadish, S.J. Pearton (Elsevier, 2006)

    Google Scholar 

  12. R. Triboulet, J. Perriere, Prog. Cryst. Growth Charact. Mater. 47, 65 (2003)

    Article  Google Scholar 

  13. T. Fukumura, H. Toyosaki, Y. Yamada, Semicond. Sci. Technol. 20, S103–S111 (2005)

    Article  ADS  Google Scholar 

  14. D.M. Bagnall, Y.F. Chen, Z. Zhu, T. Yao, S. Koyama, M.Y. Shen, T. Goto, Appl. Phys. Lett. 70, 2230 (1997)

    Google Scholar 

  15. A. Ohtomo, K. Tamura, M. Kawasaki, T. Makino, Y. Segawa, Z.K. Tang, G.K.L. Wong, Y. Matsumoto, H. Koinuma, Appl. Phys. Lett. 77, 2204 (2000)

    Article  ADS  Google Scholar 

  16. H.D. Sun, T. Makino, N.T. Tuan, Y. Segawa, Z.K. Tang, G.K.L. Wong, M. Kawasaki, A. Ohtomo, K. Tamura, H. Koinuma, Appl. Phys. Lett. 77, 4250 (2000)

    Article  ADS  Google Scholar 

  17. T. Ohnishi, A. Ohtomo, M. Kawasaki, K. Takahashi, Y. Yoshimoto, Appl. Phys. Lett. 72, 824 (1998)

    Article  ADS  Google Scholar 

  18. J.I. Pankove, Optical Processes in Semiconductors (Dover Publications, New York, 1971)

    Google Scholar 

  19. L. Birman, Phys. Rev. Lett. 2, 157 (1959)

    Article  ADS  Google Scholar 

  20. Landolt-Bçrnstein, New Series, Group III, vol. 17 B, 22, 41B, ed. by U. Rçssler, (Springer, Heidelberg, 1999)

    Google Scholar 

  21. C. Klingshirn, Semiconductor Optics, 3rd edn. (Springer, Heidelberg, 2006)

    Google Scholar 

  22. J.H. Davies, The Physics of Low-Dimensional Semiconductors (Cambridge University Press, Cambridge, 1998)

    Google Scholar 

  23. P. Harrison, Quantum Wells (Wires and Dots, New York, 2000)

    Google Scholar 

  24. P.K. Basu, Theory of Optical Processes in Semiconductors: Bulk and Microstructures (Clarendon Press, Oxford, 1997)

    Google Scholar 

  25. L.M. Kukreja, B.N. Singh, P. Misra, Pulsed Laser Deposition of Nanostructured Semiconductors, in Bottom-up Nanofabrication: Supramolecules, Self-Assemblies and Organized Films, ed. by K. Ariga, H.S. Nalwa, (American Scientific, California, 2008)

    Google Scholar 

  26. P. Misra, L.M. Kukreja, Thin Solid Films 485(1–2), 42 (2005)

    Article  ADS  Google Scholar 

  27. P. Misra, T.K. Sharma, L.M. Kukreja, Curr. Appl. Phys. 9(1), 179 (2009)

    Article  ADS  Google Scholar 

  28. A. Ohtomo, M. Kawasaki, T. Koida, K. Masubuchi, H. Koinuma, Y. Sakura, Y. Yashida, T. Yashuda, Y. Segawa, Appl. Phys. Lett. 72, 2466 (1998)

    Article  ADS  Google Scholar 

  29. C. Klingshirn, Phys. Status Solidi B 71, 547 (1975)

    Article  ADS  Google Scholar 

  30. D.C. Reynolds, D.C. Look, B. Jogai, C.W. Litton, T.C. Collins, W. Harsch, G. Cantwell, Phys. Rev. B 57, 12151 (1998)

    Article  ADS  Google Scholar 

  31. D.W. Hamby, D.A. Lucca, M.J. Klopfstein, G. Cantwell, J. Appl. Phys. 93, 3214 (2003)

    Article  ADS  Google Scholar 

  32. C. Solbrig, E. Mollwo, Solid State Commun. 5, 625 (1975)

    Article  ADS  Google Scholar 

  33. Y. Chen, D.M. Bagnall, H.-J. Koh, K.-T. Park, K. Hiraga, Z. Zhu, T. Yao, J. Appl. Phys. 84, 3912 (1998)

    Article  ADS  Google Scholar 

  34. D.M. Bagnall, Y.F. Chen, M.Y. Shen, Z. Zhu, T. Goto, T. Yao, J. Cryst. Growth 184/185, 605 (1998)

    Google Scholar 

  35. S. Bethke, H. Pan, B.W. Wessels, Appl. Phys. Lett. 52, 138 (1998)

    Article  ADS  Google Scholar 

  36. A. Teke, Ü. Özgür, S. Doğan, X. Gu, H. Morkoç, B. Nemeth, J. Nause, H.O. Everitt, Phys. Rev. B 70, 195207 (2004)

    Article  ADS  Google Scholar 

  37. Douglas B. Chrisey, Graham K. Hubler, Pulsed Laser Deposition of Thin Films, (Wiley-interscience, 1994)

    Google Scholar 

  38. A. Alim Khan, A. Fonoberov Vladimir, A. Balandin Alexander, Appl. Phys. Lett. 86, 053103 (2005)

    Article  ADS  Google Scholar 

  39. M.S. Liu, L.A. Bursill, S. Prawer, K.W. Nugent, Y.Z. Tong, G.Y. Zhang, Appl. Phys. Lett. 74, 3125 (1999)

    Article  ADS  Google Scholar 

  40. E. Gross, S. Permogorov, B. Razbirin, J. Phys. Chem. Solids 27, 1647 (1966)

    Article  ADS  Google Scholar 

  41. T. Makino, Y. Segawa, M. Kawasaki, H. Koinuma, Semicond. Sci. Technol. 20, 78 (2005)

    Article  ADS  Google Scholar 

  42. M.H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, A. Dadgar, E. Weber, R. Russo, P. Yang, Room-temperature ultraviolet nanowire nanolasers. Science 292, 1897 (2001)

    Article  ADS  Google Scholar 

  43. P. Misra, T.K. Sharma, S. Porwal, L.M. Kukreja, Appl. Phys. Lett. 89, 161912 (2006)

    Article  ADS  Google Scholar 

  44. A. Ohtomo, A. Tsukazaki, Semicond. Sci. Technol. 20, 1 (2005)

    Article  ADS  Google Scholar 

  45. P. Misra, T.K. Sharma, G.M. Prinz, K. Thonke, L.M. Kukreja, in Proceedings IUMRS-ICAM, Banglore, Oct 7–12 2007, pp. V11–12

    Google Scholar 

  46. R. Hellmann, M. Koch, J. Feldmann, S.T. Condiff, E.O. Gobel, D.R. Yakovlev, A. Waag, G. Landwehr, Phys. Rev. B 48, 2847 (1993)

    Article  ADS  Google Scholar 

  47. M. O’Neill, M. Oestreich, W.W. Ruhle, D.E. Ashenford, Phys. Rev. 48, 8980 (1993)

    Article  Google Scholar 

  48. Y.P. Varshni, Physica 34, 149 (1967)

    Article  ADS  Google Scholar 

  49. B.P. Zhang, N.T. Binh, K. Wakatsuki, C.Y. Liu, Y. Segawa, N. Usami, Appl. Phys. Lett. 86, 032105 (2005)

    Article  ADS  Google Scholar 

  50. T. Mozume, J. Kasai, J. Appl. Phys. 95, 1050 (2004)

    Article  ADS  Google Scholar 

  51. P. Misra, T.K. Sharma, L.M. Kukreja, Superlattices Microstruct. 42(1–6), 212–217 (2007)

    Article  ADS  Google Scholar 

  52. U. Koch, A. Fojtik, H. Weller, A. Henglein, Chem. Phys. Lett. 122, 507 (1985)

    Article  ADS  Google Scholar 

  53. L. Spanhel, M.A. Anderson, J. Am. Chem. Soc. 113, 2826 (1991)

    Article  Google Scholar 

  54. E.M. Wong, J.E. Bonevich, P.C. Searson, J. Phys. Chem. B 102, 7770 (1998)

    Article  Google Scholar 

  55. J.J. Cavaleri, D.E. Skinner, D.P. Colombo Jr, R.M. Bowman, J. Chem. Phys. 103, 5378 (1995)

    Article  ADS  Google Scholar 

  56. E.M. Wong, P.C. Searson, Appl. Phys. Lett. 74, 2939 (1999)

    Article  ADS  Google Scholar 

  57. I. Ohkubo, Y. Matsumoto, A. Ohtomo, T. Ohnishi, A. Tsukazaki, M. Lippmaa, H. Koinuma, M. Kawasaki, Appl. Surf. Sci. 159–160, 514 (2000)

    Article  Google Scholar 

  58. S. Barik, A.K. Srivastava, P. Misra, R.V. Nandedkar, L.M. Kukreja, Solid State Commun. 127, 463 (2003)

    Article  ADS  Google Scholar 

  59. L.M. Kukreja, P. Misra, A.K. Das, J. Sartor, H. Kalt, J. Vac. Sci. Technol., A 29(3), 120 (2011)

    Article  Google Scholar 

  60. L.M. Kukreja, S. Barik, P. Misra Jr, Cryst. Growth 268(3–4), 531 (2004)

    Article  ADS  Google Scholar 

  61. L.M. Kukreja, P. Misra, J. Fallert, J. Sartor, H. Kalt, C. Klingshirn, IEEE Photon. Global 1 (2009)

    Google Scholar 

  62. L.E. Brus, J. Chem. Phys. 80, 4403 (1984)

    Article  ADS  Google Scholar 

  63. Y. Kayanuma, Phys. Rev. B 38, 9797 (1988)

    Google Scholar 

  64. Y. Kayanuma, Phys. Rev. B 38, 9797 (1988)

    Google Scholar 

  65. M.V. Rama Krishna, R.A. Friesner, Phys. Rev. Lett. 67, 629 (1991)

    Article  ADS  Google Scholar 

  66. P.E. Lippens, M. Lannoo, Phys. Rev. B 39, 10935 (1989)

    Article  ADS  Google Scholar 

  67. S.V. Nair, L.M. Ramaniah, K.C. Rustagi, Phys. Rev. B 45, 5969 (1992)

    Article  ADS  Google Scholar 

  68. K.-F. Lin, H.-M. Cheng, H.-C. Hsu, L.-J. Lin, W.-F. Hsieh, Chem. Phys. Lett. 409, 208 (2005) and references cited therein

    Google Scholar 

  69. V.A. Fonoberov, K.A. Alim, A.A. Balandin, F. Xiu, J. Liu, Phys. Rev. B 73, 165317 (2006)

    Article  ADS  Google Scholar 

  70. W.-T. Hsu, K.-F. Lin, W.-F. Hseih, Appl. Phys. Lett. 91, 181913 (2007)

    Article  ADS  Google Scholar 

  71. V.V. Travanikov, A. Freiberg, S.F. Savikhin, J. Lumin. 47, 107 (1990)

    Article  Google Scholar 

  72. L. Wischmeier, T. Voss, I. Ruckmann, J. Gutowski, Nanotechnology 19, 135705 (2008)

    Article  ADS  Google Scholar 

  73. B.K. Meyer et al., Phys. Status Solidi B 241, 231 (2003)

    Article  ADS  Google Scholar 

  74. M. Chen, X. Wang, Y.H. Yu, Z.L. Pei, X.D. Bai, C. Sun, R.F. Huang, L.S. Wen, Appl. Surf. Sci. 158, 134 (2000)

    Article  ADS  Google Scholar 

  75. N. Ohtsu, M. Oku, T. Shishido, K. Wagatsuma, Appl. Surf. Sci. 253, 8713 (2007)

    Article  ADS  Google Scholar 

  76. M.N. Islam, T.B. Ghosh, K.L. Chopra, H.N. Acharya, Thin Solid Films 280, 20 (1996)

    Article  ADS  Google Scholar 

  77. R. Heitz, I. Mukhametzhanov, O. Stier, A. Madhukar, D. Bimberg, Phys. Rev. Lett. 83, 4654 (1999)

    Article  ADS  Google Scholar 

  78. J.-P. Richters, T. Voss, D.S. Kim, R. Scholz, M. Zacharias, Nanotechnology 19, 305202 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

It is a pleasure to thank Prof. C. Klingshirn of University of Karlsruhe, Germany, Dr. G. M. Prinz and Dr. K. Thonke of Institut für Halbleiterphysik, Universität Ulm, Germany, and Dr. T. K. Sharma, Mr. Sanjay Porwal, and Dr. S. M. Oak of Raja Ramanna Centre for Advanced Technology, Indore for their help with the PL measurements and many fruitful discussions. We also thank Dr. T. Ganguli, Dr. A. K. Shrivastava, and Dr. S. K. Deb of our centre for their help with HRXRD and TEM measurements and Dr. D. M. Phase and Mr. A. Wadikar of UGC—DAE Centre for Scientific Research, Indore for their help with the XPS measurements. LMK thanks Alexander von Humboldt foundation of Germany for the financial support to visit University of Karlsruhe and Universität Ulm where low temperature PL studies were carried out.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. M. Kukreja .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer India

About this chapter

Cite this chapter

Kukreja, L.M., Misra, P. (2014). Photoluminescence Processes in ZnO Thin Films and Quantum Structures. In: Rao, M., Okada, T. (eds) ZnO Nanocrystals and Allied Materials. Springer Series in Materials Science, vol 180. Springer, New Delhi. https://doi.org/10.1007/978-81-322-1160-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-81-322-1160-0_3

  • Published:

  • Publisher Name: Springer, New Delhi

  • Print ISBN: 978-81-322-1159-4

  • Online ISBN: 978-81-322-1160-0

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics