Skip to main content
Log in

Influence of ambient pressure on the hole formation in laser deep drilling

  • Rapid communication
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We investigate the temporal evolution of the hole depth and shape for percussion drilling at different ambient pressure conditions. Deep drilling is performed in silicon as target material by ultrashort laser pulses at 1030 nm and a duration of 8 ps. Simultaneously, the backlit silhouette of the hole is imaged perpendicular to the drilling direction. While typical process phases like depth development and shape evolution are very similar for atmospheric pressure down to vacuum conditions (10−2 mbar), the ablation rate in the initial process phase is significantly increased for reduced pressure. The number of pulses till the stop of the drilling process also increases by a pressure reduction and exceeds drilling at atmospheric conditions by two orders of magnitude for a pressure of ca. 10−2 mbar. Accordingly, the maximum achievable hole depth is more than doubled. We attribute this behavior to an enlarged mean free path for ablation products at reduced pressure and therefore lower or no deposition of particles inside the hole capillary under vacuum conditions while debris fills the hole already after a few thousand pulses at atmospheric pressure. This is supported by scanning electron cross section images of the holes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. F. Dausinger, F. Lichtner, H. Lubatschowski, Femtosecond Technology for Technical and Medical Applications (Springer, Berlin, 2004)

    Book  Google Scholar 

  2. D. Breitling, A. Ruf, F. Dausinger, Proc. SPIE 5339, 49 (2004)

    Article  ADS  Google Scholar 

  3. S. Preuss, A. Demchuk, M. Stuke, Appl. Phys. A 61, 33 (1995)

    Article  ADS  Google Scholar 

  4. B.N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, A. Tünnermann, Appl. Phys. A 63, 109 (1996)

    Article  ADS  Google Scholar 

  5. S. Nolte, C. Momma, H. Jacobs, A. Tünnermann, B.N. Chichkov, B. Wellegehausen, H. Welling, J. Opt. Soc. Am. B 14, 2716 (1997)

    Article  ADS  Google Scholar 

  6. S. Döring, S. Richter, S. Nolte, A. Tünnermann, Opt. Express 18, 20395 (2010)

    Article  Google Scholar 

  7. S. Döring, S. Richter, S. Nolte, A. Tünnermann, Appl. Phys. A 105, 69 (2011)

    Article  ADS  Google Scholar 

  8. S. Amoruso, B. Toftmann, J. Schou, R. Velotta, X. Wang, Thin Solid Films 453–454, 562 (2004)

    Article  Google Scholar 

  9. A.V. Bulgakov, I. Ozerov, W. Marine, Thin Solid Films 453–454, 557 (2004)

    Article  Google Scholar 

  10. S. Amoruso, R. Bruzzese, C. Pagano, X. Wang, Appl. Phys. A 89, 1017 (2007)

    Article  ADS  Google Scholar 

  11. T. Matsumura, A. Kazama, T. Yagi, Appl. Phys. A 81, 1393 (2005)

    Article  ADS  Google Scholar 

  12. A. Michalowski, D. Walter, F. Dausinger, T. Graf, J. Laser Micro Nanoeng. 3, 211 (2008)

    Article  Google Scholar 

  13. C. Föhl, D. Breitling, F. Dausinger, Proc. SPIE 5121, 271 (2003)

    Article  ADS  Google Scholar 

  14. F.P. Mezzapesa, L.L. Columbo, M. Brambilla, M. Dabbicco, A. Ancona, T. Sibillano, G. Scamarcio, Appl. Phys. Lett. 101, 011103 (2012)

    Article  ADS  Google Scholar 

  15. A.E. Wynne, B.C. Stuart, Appl. Phys. A 76, 373 (2003)

    Article  ADS  Google Scholar 

  16. S.M. Klimentov, P.A. Pivovarov, V.I. Konov, D. Breitling, F. Dausinger, Quantum Electron. 34, 537 (2004)

    Article  ADS  Google Scholar 

  17. D. Meschede, Gerthsen Physik, 21st edn. (Springer, Berlin, 2002), pp. 221–223

    MATH  Google Scholar 

  18. A. Bondi, J. Phys. Chem. 68, 441 (1964)

    Article  Google Scholar 

  19. A. Di Bernardo, C. Courtois, B. Cros, G. Matthieussent, D. Batani, T. Desai, F. Strati, G. Lucchini, Laser Part. Beams 21, 59 (2003)

    Article  ADS  Google Scholar 

  20. Z. Wu, X. Zhu, N. Zhang, J. Appl. Phys. 109, 053113 (2011)

    Article  ADS  Google Scholar 

  21. S. Besner, J.-Y. Degorce, A.V. Kabashin, M. Meunier, Appl. Surf. Sci. 247, 163 (2005)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support by the Deutsche Forschungsgemeinschaft (DFG, Leibniz program) and the Fraunhofer–Gesellschaft. Sören Richter is supported by the Hans L. Merkle Stiftung.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Döring.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Döring, S., Richter, S., Heisler, F. et al. Influence of ambient pressure on the hole formation in laser deep drilling. Appl. Phys. A 112, 623–629 (2013). https://doi.org/10.1007/s00339-013-7836-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-013-7836-7

Keywords

Navigation