Skip to main content
Log in

A new method to measure permittivity and permeability in nanopowder materials in microwave range

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

A new method for measuring the electromagnetic properties (permittivity and permeability) of nanopowder materials in a wide microwave region is presented. Unlike previously developed systems, our experimental setup is based on reflection measurements over a short-circuited transmission line combined with the application of a uniform magnetostatic field. When this field is sufficiently high to saturate the material, the effective permeability of the sample equals the permeability of free space, without modifying its electrical properties. Hence, for each frequency, the permittivity can be obtained through the measurement of a single scattering parameter, such as the reflection coefficient. After this first measurement, and once the external field is removed, the reflection coefficient can be used again to obtain the permeability by means of the permittivity value obtained before. As the major advantage, this procedure allows the recording of the experimental data in just one sweep, using one-port measurements, and without modifying the geometrical characteristics of the sample holder. Hence, the measurement process can be easily automated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J. Baker-Jarvis, Natl. Inst. Stand. Technol. Tech. Note 1341-R (1990)

  2. H. Ebara, T. Inoue, O. Hashimoto, Sci. Technol. Adv. Mater. 7, 77 (2006)

    Article  Google Scholar 

  3. A.N. Yusoff, M.H. Abdullah, J. Magn. Magn. Mater. 269, 271 (2004)

    Article  ADS  Google Scholar 

  4. N.N. Al-Moayed, M.N. Afsar, U.A. Khan, S. McCooey, M. Obol, IEEE Trans. Magn. 44(7), 1768 (2008)

    Article  ADS  Google Scholar 

  5. G. Roussy, H. Chaabane, H. Esteban, IEEE Trans. Microw. Theory Tech. 52(3), 903 (2004)

    Article  ADS  Google Scholar 

  6. A. Paula, J. Barroso, M. Rezende, presented at Int. Microwave and Optoelectronics Conf. (2009)

  7. M. Driss, S. Bri, A. Nakheli, M. Haddad, M. Mamouni, Eur. J. Sci. Res. 49, 234 (2011)

    Google Scholar 

  8. U. Hasar, Prog. Electromagn. Res. 93, 161 (2009)

    Article  Google Scholar 

  9. R.S. Elliott, An Introduction to Guided Waves and Microwave Circuits (Prentice Hall, New York, 1993)

    Google Scholar 

  10. D. Ba, P. Sabouroux, Microw. Opt. Technol. Lett. 52, 2644 (2010)

    Article  Google Scholar 

  11. A. Robert, J. Appl. Geophys. 40, 89 (1998)

    Article  ADS  Google Scholar 

  12. J. Baker-Jarvis, M.D. Janezic, J.H. Grasvenor Jr., R.G. Geyer, Natl. Inst. Stand. Technol. Tech. Note 1355i-R (1993)

  13. R.B. Yang, W.F. Liang, C.K. Lin, J. Appl. Phys. 109, 07D722 (2011)

    Article  Google Scholar 

  14. L. Xi, Z. Wang, Y. Zuo, X.N. Shi, Nanotechnology 22, 045707 (2011)

    Article  ADS  Google Scholar 

  15. R.K. Wangsness, Electromagnetic Fields (Wiley, New York, 1979)

    Google Scholar 

  16. D.M. Pozar, Microwave Engineering (Wiley, New York, 2005)

    Google Scholar 

  17. J.A. Jargon, M.D. Janezic, in IEEE MTT-S Int. Microwave Symp. Dig. (1996), p. 1407

    Google Scholar 

  18. P. Hernandez-Gomez, J.M. Muñoz, M.A. Valente, IEEE Trans. Magn. 46, 475 (2010)

    Article  ADS  Google Scholar 

  19. E.P. Wohlfarth, K.H.J. Buschow, in Ferromagnetic Materials: A Handbook on the Properties of Magnetically Ordered Substances, vol. 2, ed. by E.P. Wohlfarth (North-Holland, Amsterdam, 1980)

    Google Scholar 

  20. J.J. Green, F. Sandy, IEEE Trans. Microw. Theory Tech. 22, 641 (1974)

    Article  ADS  Google Scholar 

  21. S. Chikazumi, Physics of Magnetism (Wiley, New York, 1964)

    Google Scholar 

  22. M. Hotta, M. Hayashi, A. Nishikata, K. Nagata, ISIJ Int. 49, 1443 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

The authors want to acknowledge their support by Junta de Castilla y León, under project VA230A11-2, and Ministerio de Ciencia e Innovación of the Spanish Government, under project AIB2010PT-00265.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego González-Herrero.

Additional information

Carlos de Francisco: In memoriam.

Rights and permissions

Reprints and permissions

About this article

Cite this article

González-Herrero, D., Muñoz, J.M., Torres, C. et al. A new method to measure permittivity and permeability in nanopowder materials in microwave range. Appl. Phys. A 112, 719–725 (2013). https://doi.org/10.1007/s00339-013-7765-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-013-7765-5

Keywords

Navigation