Skip to main content
Log in

Non-volatile memory effect of a high-density NiSi nano-dots floating gate memory using single triangular-shaped Si nanowire channel

  • Rapid communication
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

A back-gated nonplanar floating gate device based on buried single triangular-shaped Si nanowire channel (width ∼40 nm) and embedded high-density uniform NiSi nano-dots (∼1.5×1012 cm−2) is demonstrated. Memory properties including memory window, programming/erasing, and retention are evaluated. The transfer and transient characteristics show clear charge injection, storage and removal effects and the associated programming/erasing mechanism based on fringing electric field is studied. Robust room and high temperature retention performance is observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. S. Tiwari, F. Rana, H. Hanafi, A. Hartstein, E.F. Crabbe, K. Chan, Appl. Phys. Lett. 68(10), 1377 (1996)

    Article  ADS  Google Scholar 

  2. M. She, T.J. King, IEEE Trans. Electron Devices 50, 1934 (2003)

    Article  ADS  Google Scholar 

  3. J.H. Chen, Y.Q. Wang, W.J. Yoo, Y.-C. Yeo, G. Samudra, D.S. Chan, A.Y. Du, D.-L. Kwong, IEEE Trans. Electron Devices 51, 1840 (2004)

    Article  ADS  Google Scholar 

  4. Z. Liu, C. Lee, V. Narayanan, G. Pei, E.C. Kan, IEEE Trans. Electron Devices 49, 1614 (2002)

    Article  ADS  Google Scholar 

  5. J.J. Lee, D.-L. Kwong, IEEE Trans. Electron Devices 52, 507 (2005)

    Article  ADS  Google Scholar 

  6. H.M. Zhou, Z.L. Li, J.-G. Zheng, J.L. Liu, Appl. Phys. A 109, 535 (2012)

    Article  ADS  Google Scholar 

  7. W.R. Chen, T.C. Chang, J.L. Yeh, S.M. Sze, C.Y. Chang, Appl. Phys. Lett. 92, 152114 (2008)

    Article  ADS  Google Scholar 

  8. B. Li, J. Ren, J. Liu, Appl. Phys. Lett. 96, 172104 (2010)

    Article  ADS  Google Scholar 

  9. H. Liu, W. Winkenwerder, Y. Liu, D. Ferrer, D. Shahrjerdi, S.K. Stanley, J.G. Ekerdt, S.K. Banerjee, IEEE Trans. Electron Devices 55, 3610 (2008)

    Article  ADS  Google Scholar 

  10. H. Zhou, J.A. Dorman, Y.-C. Perng, S. Gachot, J.-G. Zheng, J.P. Chang, J. Liu, Appl. Phys. Lett. 98, 192107 (2011)

    Article  ADS  Google Scholar 

  11. Y.-H. Lin, C.-H. Chien, Solid-State Electron. 80, 5–9 (2013)

    Article  ADS  Google Scholar 

  12. Y.-H. Lin, C.-H. Chien, C.-T. Lin, C.-Y. Chang, T.-F. Lei, IEEE Trans. Electron Devices 53, 3086 (2006)

    Article  ADS  Google Scholar 

  13. D.U. Lee, H.J. Lee, E.K. Kim, H.-W. You, W.-J. Cho, Jpn. J. Appl. Phys. 51(6), 06FE13 (2012)

    Article  ADS  Google Scholar 

  14. Y.S. Lo, K.C. Liu, J.Y. Wu, C.H. Hou, T.B. Wu, Appl. Phys. Lett. 93, 132907 (2008)

    Article  ADS  Google Scholar 

  15. J. Ren, B. Li, J.-G. Zheng, J. Liu, Solid-State Electron. 67, 23 (2012)

    Article  ADS  Google Scholar 

  16. D.U. Lee, H.J. Lee, E.K. Kim, H.-W. You, W.-J. Cho, Appl. Phys. Lett. 100, 072901 (2012)

    Article  ADS  Google Scholar 

  17. L. Perniola, B.D. Salvo, G. Ghibaudo, A. Foglio Para, G. Pananakakis, T. Baron, S. Lombardo, Solid-State Electron. 47, 1637 (2003)

    Article  ADS  Google Scholar 

  18. R. Gusmeroli, C.M. Compagnoni, A.S. Spinelli, Microelectron. Eng. 84, 2869 (2007)

    Article  Google Scholar 

  19. D. Hisamoto, W.-C. Lee, J. Kedzierski, H. Takeuchi, K. Asano, C. Kuo, E. Anderson, T.-J. King, J. Bokor, C. Hu, IEEE Trans. Electron Devices 47, 12 (2000)

    Google Scholar 

  20. H. Takato, K. Sunouchi, N. Okabe, A. Nitayama, K. Hieda, F. Horiguchi, F. Masuoka, IEEE Trans. Electron Devices 38, 3 (1991)

    Article  Google Scholar 

  21. S.S. Kim, W.-J. Cho, C.-G. Ahn, K. Im, J.-H. Yang, I.-B. Baek, S. Lee, K.S. Lim, Appl. Phys. Lett. 88, 223502 (2006)

    Article  ADS  Google Scholar 

  22. S. Lombardo, C. Gerardi, L. Breuil, C. Jahan, L. Perniola, G. Cina, D. Corso, E. Tripiciano, V. Ancarani, G. Lannaccone, G. Iacono, C. Bongiorno, J. Razafindramora, C. Garozzo, P. Barbera, E. Nowak, R. Puglisi, G.A. Costa, C. Coccorese, M. Vecchio, E. Rimini, J. Van Houdt, B. De Salvo, M. Melanotte, in IEDM (2007), pp. 921–924

    Google Scholar 

  23. J. Sarkar, S. Dey, D. Shahrjerdi, S.K. Banerjee, IEEE Electron Device Lett. 28, 449 (2007)

    Article  ADS  Google Scholar 

  24. D. Yeom, J. Kang, M. Lee, J. Jang, J. Yun, D.-Y. Jeong, C. Yoon, J. Koo, S. Kim, Nanotechnology 19, 395204 (2008)

    Article  Google Scholar 

  25. C.J. Yoon, D.H. Yeom, D.Y. Jeong, M.G. Lee, B.M. Moon, S.S. Kim, C.Y. Choi, S.M. Koo, J. Appl. Phys. 105, 064503 (2009)

    Article  ADS  Google Scholar 

  26. J. Ren, B. Li, J.-G. Zheng, M. Olmedo, H. Zhou, Y. Shi, J. Liu, IEEE Electron Device Lett. 33, 1390 (2012)

    Article  ADS  Google Scholar 

  27. R. Muralidhar, R.F. Steimle, M. Sadd, R. Rao, C.T. Swift, E.J. Prinz, J. Yater, L. Grieve, K. Harber, B. Hradsky, S. Straub, B. Acred, W. Paulson, W. Chen, L. Parker, S.G.H. Anderson, M. Rossow, T. Merchant, M. Paransky, T. Huynh, D. Hadad, K.-M. Chang, B.E. White Jr., in IEDM Technical Digest (2003), pp. 26.2.1–26.2.4

    Google Scholar 

  28. A.I. Persson, M.W. Larsson, S. Stenstrom, B.J. Ohlsson, L. Samuelson, L.R. Wallenberg, Nat. Mater. 3, 677 (2004)

    Article  ADS  Google Scholar 

  29. J.-P. Colinge, C.-W. Lee, A. Afzalian, N.D. Akhavan, R. Yan, I. Ferain, P. Razavi, B. O’Neill, A. Blake, M. White, A.-M. Kelleher, B. McCarthy, R. Murphy, Nat. Nanotechnol. 5, 225 (2010)

    Article  ADS  Google Scholar 

  30. Y. Cao, L. Nyborg, U. Jelvestam, Surf. Interface Anal. 41(6), 471–483 (2009)

    Article  Google Scholar 

  31. Y. Cui, Z. Zhong, D. Wang, W.U. Wang, C.M. Lieber, Nano Lett. 3, 149 (2003)

    Article  ADS  Google Scholar 

  32. E.-S. Liu, N. Jain, K.M. Varahramyan, J. Nah, S.K. Banerjee, IEEE Trans. Nanotechnol. 9, 237 (2010)

    Article  ADS  Google Scholar 

  33. U. Ganguly, C. Lee, T.-H. Hou, E.C. Kan, IEEE Trans. Nanotechnol. 6, 22 (2007)

    Article  ADS  Google Scholar 

  34. M. Olmedo, C. Wang, K. Ryu, H. Zhou, J. Ren, N. Zhan, C. Zhou, J. Liu, ACS Nano 5, 7972 (2011)

    Article  Google Scholar 

  35. D.K. Schroder, Semiconductor Material and Device Characterization, 3rd edn. (Wiley, New York, 2006), pp. 185–250

    Google Scholar 

  36. M. Saitoh, E. Nagata, T. Hiramoto, Appl. Phys. Lett. 82, 1787 (2003)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This material is based on research sponsored by DARPA/Defense Microelectronics Activity (DMEA) under agreement number H94003-10-2-1003 and the National Science Foundation (NSF) DMR-0807232.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianlin Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ren, J., Yan, D., Chu, S. et al. Non-volatile memory effect of a high-density NiSi nano-dots floating gate memory using single triangular-shaped Si nanowire channel. Appl. Phys. A 111, 719–724 (2013). https://doi.org/10.1007/s00339-013-7641-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-013-7641-3

Keywords

Navigation