Skip to main content
Log in

Non-agglomerated gold-PMMA nanocomposites by in situ-stabilized laser ablation in liquid monomer for optical applications

  • Rapid communication
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The main goal in the production of nanocomposites for optical applications is the uniform and non-agglomerated incorporation of nanoparticles into polymer matrices. Therefore, in this work gold nanoparticles have been generated by short-pulsed liquid phase laser ablation in methyl methacrylate (MMA) with or without dissolved poly(methyl methacrylate) (PMMA) followed by polymerization. The polymeric materials were then used in injection molding to form model nanocomposites for further analysis. It has been observed that the steric in situ-stabilization of nanoparticles by dissolved PMMA inhibits particle aggregation in MMA and due to particle quenching results in smaller nanoparticles than that achieved by working in pure MMA. Similar but even more pronounced stability issues have been highlighted on injection molded optical nanocomposites, revealing that the in situ-stabilization of nanoparticles with PMMA not only prevent an agglomeration in the colloidal state but could also prevent changes in particles dispersion along the entire processing chain ending in final 3D polymer samples. Besides the optical study of the characteristic plasmon peak of gold nanoparticles and the nonlinear absorption behavior for femtosecond laser pulses, XRD analysis revealed the appearance of atomic gold in a centrosymmetric Fm3m cubic structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. R. Pacios, R. Marcilla, C. Pozo-Gonzalo, J.A. Pomposo, H. Grande, J. Aizpurua, D.J. Mecerreyes, J. Nanosci. Nanotechnol. 8, 2938–2941 (2007)

    Article  Google Scholar 

  2. J. Smith, J. Connell, D. Delozier, P. Lillehei, K. Watson, Y. Lin, B. Zhou, Y. Sun, Polymer 45(3), 825–836 (2004)

    Article  Google Scholar 

  3. M. Wang, X. Wang, Polymer 49(6), 1587–1593 (2008)

    Article  Google Scholar 

  4. L. Polavarapu, N. Venkatram, W. Ji, Q.H. Xu, ACS Appl. Mater. Interfaces 1(10), 2298–2303 (2009)

    Article  Google Scholar 

  5. L. Francois, M. Mostafavi, J. Belloni, J. Delaire, Phys. Chem. Chem. Phys. 3, 4965–4971 (2001)

    Article  Google Scholar 

  6. S. Qu, C. Du, Y. Song, Y. Wang, Y. Gao, S. Liu, Y. Li, D. Zhu, Chem. Phys. Lett. 356, 403–408 (2002)

    Article  ADS  Google Scholar 

  7. C. Noguez, J. Phys. Chem. C 111, 3806–3819 (2007)

    Article  Google Scholar 

  8. E.T. Thostenson, C. Li, T.W. Chou, Compos. Sci. Technol. 65(3), 491–516 (2005)

    Article  Google Scholar 

  9. D.W. Schaefer, J. Zhao, J.M. Brown, D.P. Anderson, D.W. Tomlin, Chem. Phys. Lett. 375, 369 (2003)

    Article  ADS  Google Scholar 

  10. Y.Y. Huang, S.V. Ahir, E.M. Terentjev, Phys. Rev. B 73, 125422 (2006)

    Article  ADS  Google Scholar 

  11. M. Sennett, E. Welsh, J.B. Wright, W.Z. Li, J.G. Wen, Z.F. Ren, Appl. Phys. A 76, 111 (2003)

    Article  ADS  Google Scholar 

  12. J.A. Dahl, B.L.S. Maddux, J.E. Hutchison, Chem. Rev. 107, 2228–2269 (2007)

    Article  Google Scholar 

  13. M. Prochazka, P. Mojzes, J. Stepanek, B. Vlekova, P.Y. Turpin, Anal. Chem. 69, 5103–5108 (1997)

    Article  Google Scholar 

  14. F. Mafune, J. Kohno, Y. Takeda, T. Kondow, H. Sawabe, J. Phys. Chem. B 104, 9111–9117 (2000)

    Article  Google Scholar 

  15. A.V. Kabashin, M. Meunier, J. Appl. Phys. 94, 7941–7943 (2003)

    Article  ADS  Google Scholar 

  16. A.V. Simakin, V.V. Voronov, N.A. Kirichenko, G.A. Shafeev, Appl. Phys. A 79, 1127–1132 (2004)

    Article  ADS  Google Scholar 

  17. N. Barsch, A. Gatti, R. Sattari, S. Barcikowski, J. Laser Micro Nanoeng. 4, 66–70 (2009)

    Article  Google Scholar 

  18. V. Amendola, M. Meneghetti, Phys. Chem. Chem. Phys. 11, 3805–3821 (2009)

    Article  Google Scholar 

  19. S. Barcikowski, M. Hustedt, B. Chichkov, Polimery 53, 657–662 (2008)

    Google Scholar 

  20. A.M. Menendez, A. Schwenke, T. Steinke, M. Meyer, U. Giese, P. Wagener, S. Barcikowski, Appl. Phys. A 110, 343–350 (2013)

    ADS  Google Scholar 

  21. S. Dengler, C. Kübel, A. Schwenke, G. Ritt, B. Eberle, J. Opt. (2012). doi:10.1088/2040-8978/14/7/075203

    MATH  Google Scholar 

  22. P. Wagener, G. Brandes, A. Schwenke, S. Barcikowski, Phys. Chem. Chem. Phys. 13, 5120–5126 (2011)

    Article  Google Scholar 

  23. P. Wagener, S. Faramarzi, A. Schwenke, R. Rosenfeld, S. Barcikowski, Appl. Surf. Sci. 257, 7231–7237 (2011)

    Article  ADS  Google Scholar 

  24. T. Tsuji, K. Iryo, N. Watanabe, M. Tsuji, Appl. Surf. Sci. 202(1–2), 80–85 (2002)

    Article  ADS  Google Scholar 

  25. S.C. Singh, R. Gopal, J. Phys. Chem. C 112(8), 2812–2819 (2008)

    Article  Google Scholar 

  26. W.T. Nichols, T. Sasaki, N. Koshizaki, J. Appl. Phys. 100(11), 114912 (2006)

    Article  ADS  Google Scholar 

  27. A. Schwenke, P. Wagener, S. Nolte, S. Barcikowski, Appl. Phys. A, Mater. Sci. Process. 104, 77–82 (2011)

    Article  ADS  Google Scholar 

  28. S. Besner, A.V. Kabashin, F.M. Winnik, M. Meunier, J. Chem. Phys. C 113, 9526–9531 (2009)

    Article  Google Scholar 

  29. T. Tsuji, D.H. Thang, Y. Okazaki, M. Nakanishi, Y. Tsuboi, M. Tsuji, Appl. Surf. Sci. 254, 5224–5230 (2008)

    Article  ADS  Google Scholar 

  30. P. Wagener, A. Schwenke, B.N. Chichkov, S. Barcikowski, J. Phys. Chem. C 114, 7618–7625 (2010). doi:10.1021/jp911243a

    Article  Google Scholar 

  31. M. Sheik-Bahae, A.A. Said, T.-H. Wei, D.J. Hagan, E.W. Van Stryland, IEEE J. Quantum Electron. 26, 760–769 (1990)

    Article  ADS  Google Scholar 

  32. W. Haiss, N.T. Thanh, J. Aveyard, D.G. Fernig, Anal. Chem. 79(11), 4215–4221 (2007)

    Article  Google Scholar 

  33. H. Muto, K. Yamada, K. Miyajima, F. Mafume, J. Phys. Chem. C 111, 17221–17226 (2007)

    Article  Google Scholar 

  34. V. Bogatyrev, L. Dykman, B. Khlebtsov, N. Khlebtsov, Opt. Spectrosc. 96(1), 128–135 (2004)

    Article  ADS  Google Scholar 

  35. Joint Committee of Powder Diffraction Standards (JCPDS) Card No. 4-784

  36. A.K. Tomar, S. Mahendia, S. Kumar, Adv. Appl. Sci. Res. 2, 327 (2011)

    Google Scholar 

  37. S. Qua, Y. Song, H. Liu, Y. Wang, Y. Gao, S. Liu, X. Zhang, Y. Li, D. Zhu, Opt. Commun. 203, 283–288 (2002)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The work was supported by the German Federal Ministry of Education and Research (BMBF) within the project LapoNano (FKZ 13N12123) and partially by the VolkswagenStiftung within the project “Nanostrukturierte Polymere für Anwendungen in der Optik”. The authors thank M. Wiebcke from the Institute of Inorganic Chemistry at the Leibniz University Hannover for performing the XRD measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Schwenke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schwenke, A., Dalüge, H., Kiyan, R. et al. Non-agglomerated gold-PMMA nanocomposites by in situ-stabilized laser ablation in liquid monomer for optical applications. Appl. Phys. A 111, 451–457 (2013). https://doi.org/10.1007/s00339-013-7594-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-013-7594-6

Keywords

Navigation