Skip to main content
Log in

Investigation of magnetostrictive/piezoelectric multilayer composite with a giant zero-biased magnetoelectric effect

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this paper, we investigate the resonance magnetoelectric (ME) effect in the middle supported multilayer composites consisting of high-permeability Fe-based nanocrystalline soft magnetic alloy Fe73.5Cu1Nb3Si13.5B9 (FeCuNbSiB), Nickel (Ni), and piezoelectric Pb(Zr1−x Ti x )O3 (PZT). The coupling effect between positive magnetostrictive FeCuNbSiB and negative magnetostrictive Ni results in the build-in magnetic bias due to their different magnetic permeability and coercivity. As a result, a giant resonance ME voltage coefficient (α ME,r ) at zero DC magnetic bias field (H dc) and multi-peaks of α ME,r for FeCuNbSiB/Ni/PZT/Ni/FeCuNbSiB composite are observed. The experimental results show that the giant zero-biased α ME,r strongly depends on the thickness of FeCuNbSiB ribbon. The maximum zero-biased α ME,r is up to 86 V/cm Oe for FeCuNbSiB/Ni/PZT/Ni/FeCuNbSiB with four-layer FeCuNbSiB ribbons, which is ∼500 times higher than that of the previously reported NKNLS-NZF/Ni/NKNLS-NZF trilayer composite. Compared with the peak α ME,r and the optimum H dc of Ni/PZT/Ni composite, the largest peak α ME,r of FeCuNbSiB/Ni/PZT/Ni/FeCuNbSiB composite with four-layer FeCuNbSiB ribbons increases ∼185 %, and the optimum H dc decreases ∼300 Oe, respectively. Based on the nonlinear magnetostrictive constitutive relation and the magnetoelectric equivalent circuit, a theoretical model of α ME,r versus H dc is built under free boundary conditions. Calculated zero-biased α ME,r and α ME,r versus H dc are in good agreement with the experimental data. This laminate composite shows promising applications for high-sensitivity power-free magnetic field sensors, zero-biased ME transducers and small-size energy harvesters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

ME:

Magnetoelectric

FeCuNbSiB:

Fe-based nanocrystalline soft magnetic alloy Fe73.5Cu1Nb3Si13.5B9

Ni:

Nickel

PZT:

Piezoelectric material Pb(Zr1−x Ti x )O3

α ME,r :

Resonance ME voltage coefficient

H dc :

DC magnetic bias field

FNPNF:

Laminate composite of FeCuNbSiB/Ni/PZT/Ni/FeCuNbSiB

NPN:

Laminate composite of Ni/PZT/Ni

F:

Layers of FeCuNbSiB ribbons

d 33,m1 :

The piezomagnetic coefficient of FeCuNbSiB

d 33,m2f :

The piezomagnetic coefficient of Ni with flux concentration

d 33,m2n :

The piezomagnetic coefficient of Ni without flux concentration

References

  1. M. Laletin, N. Paddubnaya, G. Srinivasan, C.P. De Vreugd, M.I. Bichurin, V.M. Petrov, D.A. Filippov, Appl. Phys. Lett. 87, 222507 (2005)

    Article  ADS  Google Scholar 

  2. S.X. Dong, J.F. Li, D. Viehland, J. Cheng, L.E. Cross, Appl. Phys. Lett. 85(16) (2004)

  3. D.A. Pan, S.G. Zhang, J.J. Tian, J.S. Sun, A.A. Volinsky, L.J. Qiao, Appl. Phys. A 98, 449–454 (2010)

    Article  ADS  Google Scholar 

  4. J. Zhai, S. Dong, Z. Xing, J. Li, D. Viehland, Appl. Phys. Lett. 89, 083507 (2006)

    Article  ADS  Google Scholar 

  5. J.Y. Zhai, Z. Xing, S.X. Dong, J.F. Li, D. Viehland, J. Am. Ceram. Soc. 91, 351–358 (2008)

    Article  Google Scholar 

  6. S.X. Dong, J.Y. Zhai, F. Bai, J.F. Li, D. Viehland, Appl. Phys. Lett. 87, 062502 (2005)

    Article  ADS  Google Scholar 

  7. S.X. Dong, J.Y. Zhai, Z.P. Xing, J.F. Li, D. Viehland, Appl. Phys. Lett. 86, 102901 (2005)

    Article  ADS  Google Scholar 

  8. L. Chen, P. Li, Y.M. Wen, D. Wang, J. Alloys Compd. 509(14), 4811 (2011)

    Article  Google Scholar 

  9. P. Li, Y. Wen, L. Bian, Appl. Phys. Lett. 90, 022503 (2007)

    Article  ADS  Google Scholar 

  10. P. Li, Y. Wen, P. Liu, X. Li, C. Jia, Sens. Actuators A 157, 100 (2010)

    Article  Google Scholar 

  11. X.Z. Dai, Y.M. Wen, P. Li, J. Yang, M. Li, Sens. Actuators A 166, 94–101 (2011)

    Article  Google Scholar 

  12. J. Yang, Y.M. Wen, P. Li, X.Z. Dai, Sens. Actuators A 168, 358–364 (2011)

    Article  Google Scholar 

  13. S.X. Dong, J.Y. Zhai, J.F. Li, D. Viehland, J. Appl. Phys. 100, 124108 (2006)

    Article  ADS  Google Scholar 

  14. S.X. Dong, J.Y. Zhai, J.F. Li, D. Viehland, Appl. Phys. Lett. 89, 122903 (2006)

    Article  ADS  Google Scholar 

  15. C.S. Park, K.H. Cho, M. Ali Arat, J. Evey, S. Priya, J. Appl. Phys. 107, 094109 (2010)

    Article  ADS  Google Scholar 

  16. L. Chen, P. Li, Y.M. Wen, Smart Mater. Struct. 19, 115003 (2010)

    Article  ADS  Google Scholar 

  17. V.M. Petrov, G. Srinivasan, Phys. Rev. B 78, 184421 (2008)

    Article  ADS  Google Scholar 

  18. S.K. Mandal, G. Sreenivasulu, V.M. Petrov, G. Srinivasan, Appl. Phys. Lett. 96, 192502 (2010)

    Article  ADS  Google Scholar 

  19. S.C. Yang, C.S. Park, K.H. Cho, S. Priya, J. Appl. Phys. 108, 093706 (2010)

    Article  ADS  Google Scholar 

  20. S.K. Mandal, G. Sreenivasulu, V.M. Petrov, G. Srinivasan, Phys. Rev. B 84, 014432 (2011)

    Article  ADS  Google Scholar 

  21. G. Sreenivasulu, S.K. Mandal, S. Bandekar, V.M. Petrov, G. Srinivasan, Phys. Rev. B 84, 144426 (2011)

    Article  ADS  Google Scholar 

  22. E. Lage, C. Kirchhof, V. Hrkac, L. Kienle, R. Jahns, R. Knöche, E. Quandt, D. Meyners, Nat. Mater. 11, 523–529 (2012)

    Article  ADS  Google Scholar 

  23. T. Leineweber, H. Kronrniiller, J. Magn. Magn. Mater. 176, 145–154 (1997)

    Article  ADS  Google Scholar 

  24. C. Prados, I. Panagiotopoulus, G.C. Hadjipanayis, IEEE Trans. Magn. 33(5) (1997)

  25. J.G. Wan, J.M. Liu, J. Appl. Phys. 93, 9916 (2003)

    Article  ADS  Google Scholar 

  26. X.J. Zheng, X.E. Liu, J. Appl. Phys. 97, 053901 (2005)

    Article  ADS  Google Scholar 

  27. C. Lei, L. Ping, W. Yu-Mei, W. Dong, Acta Phys. Sin. 60(6), 067501 (2011)

    Google Scholar 

  28. A. Aharoni, J. Appl. Phys. 83(6) (1998)

  29. S.X. Dong, J.F. Li, D. Viehland, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50, 1253 (2003)

    Article  Google Scholar 

  30. F. Yang, Y.M. Wen, P. Li, L.X. Bian, Sens. Actuators A 141, 12935 (2008)

    Google Scholar 

  31. C.W. Nan, G. Liu, Y. Lin, Appl. Phys. Lett. 83(21) (2003)

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 50830202 and 61071042) and the National High Technology Research and Development Program of China (863 Program) (No. 2012AA040602).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, C., Li, P., Wen, Y. et al. Investigation of magnetostrictive/piezoelectric multilayer composite with a giant zero-biased magnetoelectric effect. Appl. Phys. A 113, 413–421 (2013). https://doi.org/10.1007/s00339-013-7557-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-013-7557-y

Keywords

Navigation