Skip to main content
Log in

Self-biased magnetoelectric coupling characteristics of three-phase composite transducers with nanocrystallin soft magnetic alloy

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

This paper reports the self-biased magnetoelectric (ME) effects in composites consisting of high-permeability Fe-based nanocrystalline soft magnetic alloy Fe73.5Cu1Nb3Si13.5B9 (FeCuNbSiB), pure nickel (Ni) and piezoelectric lead zirconate titanate (PZT). The FeCuNbSiB ribbons are fabricated on traditional laminates Ni/PZT/Ni through two modes: the attached mode (F–NPN–F) and the laminated mode (F/NPN/F). The F–NPN–F composite sufficiently reveals that the high-permeability FeCuNbSiB ribbons concentrate more magnetic flux in magnetostrictive Ni, which results in the self-biased ME effects of F–NPN–F. For the F/NPN/F composite, the FeCuNbSiB acts as the dynamic driver to enhance the effective piezomagnetic coefficient of Ni. The giant self-biased ME effects of F/NPN/F are because of the internal magnetic field between Ni and FeCuNbSiB due to their different magnetic characteristics. The influences of the numbers of FeCuNbSiB layers (L) on the resonant ME voltage coefficients (α ME,r ) for F–NPN–F and F/NPN/F composites are investigated in detail. The experiments demonstrate that the maximum α ME,r at zero-biased field is 80 V/cm Oe for F–NPN–F with L = 2, and 85 V/cm Oe for F/NPN/F with L = 4. This paper demonstrates that these two ME composites are suitable for achieving zero-biased ME transducers, power-free magnetic field sensors and energy harvesters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. G. Lawes, G. Srinivasan, J. Phys. D Appl. Phys. 44, 243001 (2011)

    Article  ADS  Google Scholar 

  2. C.A.F. Vaz, J. Hoffman, C.H. Ahn, R. Ramesh, Adv. Mater. 22, 2900–2918 (2010)

    Article  Google Scholar 

  3. C.W. Nan, M.I. Bichurin, S.X. Dong, D. Viehland, G. Srinivasan, J. Appl. Phys. 103, 031101 (2008)

    Article  ADS  Google Scholar 

  4. U. Laletsin, N. Padubnaya, G. Srinivasan, C.P. DeVreugd, Appl. Phys. A 78, 33–36 (2004)

    Article  ADS  Google Scholar 

  5. J. Ma, J.M. Hu, Z. Li, C.W. Nan, Adv. Mater. 23, 1062–1087 (2011)

    Article  Google Scholar 

  6. C.J. Lu, C.B. Xu, L. Wang, J.P. Gao, J.G. Gui, C.H. Lin, Rev. Sci. Instrum. 85, 115003 (2014)

    Article  Google Scholar 

  7. J.Y. Zhai, S.X. Dong, Z.P. Xing, J.F. Li, D. Viehland, Appl. Phys. Lett. 91, 123513 (2007)

    Article  ADS  Google Scholar 

  8. J.L. Prieto, C. Aroca, E. Lopez et al., J. Mag. Mag. Mat. 215, 756 (2000)

    Article  ADS  Google Scholar 

  9. Y.J. Chen, S.M. Gillette, T. Fitchorov, L.P. Jiang, H.B. Hao, J.F. Li, X.X. Gao, A. Geiler, C. Vittoria, V.G. Harris, Appl. Phys. Lett. 99, 042505 (2011)

    Article  ADS  Google Scholar 

  10. Yaoxia Zhao, Lu Caijiang, Rev. Sci. Instrum. 86, 036101 (2015)

    Article  ADS  Google Scholar 

  11. Y.M. Jia, S.W. Or, H.L.W. Chan, J. Jiao, H.S. Luo, S. van der Zwaag, Appl. Phys. Lett. 94, 263504 (2009)

    Article  ADS  Google Scholar 

  12. S.C. Yang, C.S. Park, K.H. Cho, S. Priya, J. Appl. Phys. 108, 093706 (2010)

    Article  ADS  Google Scholar 

  13. Y.K. Yan, Y. Zhou, S. Priya, Appl. Phys. Lett. 102, 052907 (2013)

    Article  ADS  Google Scholar 

  14. M.H. Li, Z.G. Wang, Y.J. Wang, J.F. Li, D. Viehland, Appl. Phys. Lett. 102, 082404 (2013)

    Article  ADS  Google Scholar 

  15. D.Y. Huang, C.L. Lu, B. Han, X. Wang, C.X. Li, C.B. Xu, J.G. Gui, C.H. Lin, Appl. Phys. Lett. 105, 263502 (2014)

    Article  ADS  Google Scholar 

  16. C.S. Park, K.H. Cho, M.A. Arat, J. Evey, S. Priya, J. Appl. Phys. 107, 094109 (2010)

    Article  ADS  Google Scholar 

  17. H. Zhang, C.J. Lu, Z.X. Sun, Appl. Phys. Lett. 106, 033505 (2015)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caijiang Lu.

Additional information

D. Huang and C. Lu have contributed equally to this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, D., Lu, C. & Bing, H. Self-biased magnetoelectric coupling characteristics of three-phase composite transducers with nanocrystallin soft magnetic alloy. Appl. Phys. A 120, 115–120 (2015). https://doi.org/10.1007/s00339-015-9175-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-9175-3

Keywords

Navigation