Skip to main content
Log in

Utilizing NDR effect to reduce switching threshold variations in memristive devices

  • Rapid communication
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Variations in the switching threshold voltage of memristive devices present significant challenges for their integration into large-scale circuits. In this paper, we propose to address this problem by adding a device exhibiting S-type (N-type) negative differential resistance (NDR) in series (parallel) with memristive devices. The main effect comes from the transition between low- and high-conductivity branches of the NDR device, which leads to a redistribution of the voltage drop inside the device stack, and, as a result, the effective lowering of variations in the switching threshold. The idea is checked experimentally using a TiO2−x memristive device connected in parallel with a tunnel GaAs diode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. L.O. Chua, S.M. Kang, Memristive devices and systems. Proc. IEEE 64, 209–223 (1976)

    Article  MathSciNet  Google Scholar 

  2. R. Waser, R. Dittman, G. Staikov, K. Szot, Redox-based resistive switching memories—nanoionic mechanisms, prospects, and challenges. Adv. Mater. 21, 2632–2663 (2009)

    Article  Google Scholar 

  3. A. Sawa, Resistive switching in transition metal oxides. Mater. Today 11, 26–28 (2008)

    Article  Google Scholar 

  4. K.M. Kim, D.S. Jeong, C.S. Hwang, Nanofilamentary resistive switching in binary oxide systems; a review on the present status and outlook. Nanotechnology 22, 254002 (2011)

    Article  ADS  Google Scholar 

  5. I. Valov, R. Waser, J.R. Jameson, M.N. Kozicki, Electrochemical metallization memories—fundamentals, applications, prospects. Nanotechnology 22, 254003 (2011)

    Article  ADS  Google Scholar 

  6. K.K. Likharev, Hybrid CMOS/nanoelectronic circuits: opportunities and challenges. J. Nanoelectron. Optoelectron. 3, 203–230 (2008)

    Article  Google Scholar 

  7. S.D. Ha, S. Ramanathan, Adaptive oxide electronics. J. Appl. Phys. 110, 071101 (2011)

    Article  ADS  Google Scholar 

  8. Y.V. Pershin, M. Di Ventra, Review: memory effects in complex materials and nanoscale system. Adv. Phys. 60, 145 (2011)

    Article  ADS  Google Scholar 

  9. V.V. Zhirnov, R. Meade, R.K. Cavin, G. Sandhu, Scaling limits of resistive memories. Nanotechnology 22, 254027 (2011)

    Article  ADS  Google Scholar 

  10. J.J. Yang, D.B. Strukov, D.R. Stewart, Memristive devices for computing. Nat. Nanotechnol. 8, 13–24 (2013)

    Article  ADS  Google Scholar 

  11. G. Snider, Self-organized computation with unreliable memristive nanodevices. Nanotechnology 18, 365202 (2007)

    Article  Google Scholar 

  12. F. Alibart, L. Gao, B. Hoskins, D.B. Strukov, High-precision tuning of state for memristive devices by adaptable variation-tolerant algorithm. Nanotechnology 23, 075201 (2012)

    Article  ADS  Google Scholar 

  13. D.B. Strukov, R.S. Williams, Exponential ionic drift: fast switching and low volatility of thin film memristors. Appl. Phys. A 94, 515–519 (2009)

    Article  ADS  Google Scholar 

  14. D. Adler, M.S. Shur, M. Silver, S.R. Ovshinsky, Threshold switching in chalcogenide-glass thin films. J. Appl. Phys. 51(6), 3289–3309 (1980)

    Article  ADS  Google Scholar 

  15. E.F. Schubert, J.E. Cunningham, W.T. Tsang, Perpendicular electronic transport in doping superlattices. Appl. Phys. Lett. 51(11), 817–819 (1987)

    Article  ADS  Google Scholar 

  16. X. Zhu, X. Zheng, M. Pak, M.O. Tanner, K.L. Wang, A Si bistable diode utilizing interband tunneling junctions. Appl. Phys. Lett. 2190, 119377 (1997)

    Google Scholar 

  17. D. Ielmini, Threshold switching mechanism by high-field energy gain in the hopping transport of chalcogenide glasses. Phys. Rev. B 78, 035308 (2008)

    Article  ADS  Google Scholar 

  18. L.O. Chua, J. Yu, Y. Yu, Bipolar-JFET-MOSFET negative resistance devices. Trans. Circuits Syst. cas-32(1) (1985)

  19. N. Balkan, B.K. Ridley, A.J. Vickers, Negative Differential Resistance and Instabilities in 2-D Semiconductors (Plenum, New York, 1993)

    Book  Google Scholar 

  20. A.F. Volkov, Sh.M. Kogan, Physical phenomena in semiconductors with negative differential conductivity. Sov. Phys. Usp. 11(6), 881–903 (1969)

    Article  ADS  Google Scholar 

  21. A.S. Aleksandrov, A.M. Bratkovsky, B. Bridle, S.E. Savel’ev, D.B. Strukov, R.S. Williams, Current-controlled negative differential resistance due to Joule heating in TiO2. Appl. Phys. Lett. 99, 202104 (2011)

    Article  ADS  Google Scholar 

  22. M.D. Pickett, J. Borghetti, J.J. Yang, G. Medeiros-Ribeiro, R.S. Williams, Coexistence of memristance and negative differential resistance in a nanoscale metal-oxide-metal system. Adv. Mater. 23, 1730–1733 (2011)

    Article  Google Scholar 

  23. L. Esaki, New phenomenon in narrow germanium p–n junctions. Phys. Rev. 109, 603–604 (1958)

    Article  ADS  Google Scholar 

  24. X. Liu, S.M. Sadaf, M. Son, J. Shin, J. Park, J. Lee et al., Diode-less bilayer oxide (WO x –NbO x ) device for cross-point resistive memory applications. Nanotechnology 22, 475702 (2011)

    Article  ADS  Google Scholar 

  25. D. Kau, S. Tang, I. Karpov, R. Dodge, B. Klehn, J. Kalb et al., in Tech. Dig. IEDM Tech. Dig. (IEEE Press, New York, 2009), p. 617

    Google Scholar 

  26. X. Liu et al., Diode-less bilayer oxide (WO x –NbO x ) device for cross-point resistive memory applications. Nanotechnology 22, 475702 (2011)

    Article  ADS  Google Scholar 

  27. M.-J. Lee et al., Two series oxide resistors applicable to high speed and high density nonvolatile memory. Adv. Mater. 19, 3919–3923 (2007)

    Article  Google Scholar 

  28. S.H. Chang et al., Oxide double-layer nanocrossbar for ultrahigh-density bipolar resistive memory. Adv. Mater. 23(35), 4063–4067 (2011)

    Article  Google Scholar 

  29. J.J. Yang et al., Engineering nonlinearity into memristors for passive crossbar applications. Appl. Phys. Lett. 100, 113501 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Air Force Office of Scientific Research (AFOSR) under the MURI grant FA9550-12-1-0038.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitri B. Strukov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alibart, F., Strukov, D.B. Utilizing NDR effect to reduce switching threshold variations in memristive devices. Appl. Phys. A 111, 199–202 (2013). https://doi.org/10.1007/s00339-013-7550-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-013-7550-5

Keywords

Navigation