Skip to main content
Log in

Prediction of compressive post-buckling behavior of single-walled carbon nanotubes in thermal environments

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In the present investigation, the axial buckling and post-buckling configurations of single-walled carbon nanotubes (SWCNTs) are studied including the thermal environment effect. For this purpose, Eringen’s nonlocal elasticity continuum theory is implemented into the classical Euler–Bernoulli beam theory to represent the SWCNTs as a nonlocal elastic beam model. A closed-form analytical solution is carried out to analyze the static response of SWCNTs in their post-buckling state in which the axial buckling load is assumed to be beyond the critical axial buckling load. Common sets of boundary conditions, named simply supported–simply supported (SS–SS), clamped–clamped (C–C), and clamped–simply supported (C–SS), are considered in the investigation. Selected numerical results are given to represent the variation of the carbon nanotube’s mid-span deflection with the applied axial load corresponding to various nonlocal parameters, length-to-diameter aspect ratios, temperature changes, and end supports. Moreover, a comparison between the post-buckling behaviors of SWCNTs at low- and high-temperature environments is presented. It is found that the size effect leads to a decrease of the axial buckling load especially for SWCNTs with C–C boundary conditions. Also, it is revealed that the value of the temperature change plays different roles in the post-buckling response of SWCNTs at low- and high-temperature environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. S. Iijima, Helical microtubes of graphite carbon. Nature 354, 56 (1991)

    Article  ADS  Google Scholar 

  2. M.M.J. Treacy, T.W. Ebbesen, J.M. Gibson, Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature 381, 678 (1996)

    Article  ADS  Google Scholar 

  3. A. Krishnan, E. Dujardin, T.W. Ebbesen, P.N. Yianiolos, M.M.J. Treacy, Young’s modulus of single-walled carbon nanotubes. Phys. Rev. B 58(20), 14013 (1998)

    Article  ADS  Google Scholar 

  4. B.G. Demczyk, Y.M. Wang, J. Cumings, M. Hetman, W. Han, A. Zettl, R.O. Ritchie, Direct mechanical measurement of the tensile strength and elastic modulus of multiwalled carbon nanotubes. Mater. Sci. Eng. A 334(1–2), 173 (2002)

    Article  Google Scholar 

  5. C.H. Ke, N. Pugno, B. Peng, H.D. Espinosa, Experiments and modeling of carbon nanotube-based NEMS devices. J. Mech. Phys. Solids 53(6), 1314 (2005)

    Article  MATH  ADS  Google Scholar 

  6. X.Q. He, S. Kitipornchai, K.M. Liew, Buckling analysis of multi-walled carbon nanotube: a continuum model accounting for van der Waals interaction. J. Mech. Phys. Solids 53(2), 303 (2005)

    Article  MATH  ADS  Google Scholar 

  7. Q. Wang, V.K. Varadan, S.T. Quek, Small scale effect on elastic buckling of carbon nanotubes with nonlocal continuum models. Phys. Lett. A 357(2), 130 (2006)

    Article  ADS  Google Scholar 

  8. Y. Xiaohu, H. Qiang, Investigation of axially compressed buckling of a multi-walled carbon nanotube under temperature field. Compos. Sci. Technol. 67(1), 125 (2007)

    Article  Google Scholar 

  9. H.S. Shen, C.L. Zhang, Torsional buckling and post buckling of double-walled carbon nanotubes by nonlocal shear deformable shell model. Compos. Struct. 92(5), 1073 (2010)

    Article  MathSciNet  Google Scholar 

  10. S. Filiz, M. Aydogdu, Axial vibration of carbon nanotube heterojunctions using nonlocal elasticity. Comput. Mater. Sci. 49(3), 619 (2010)

    Article  Google Scholar 

  11. T. Natsuki, X.W. Lei, Q.Q. Ni, M. Endo, Free vibration characteristics of double-walled carbon nanotubes embedded in an elastic medium. Phys. Lett. A 374(26), 2670 (2010)

    Article  MATH  ADS  Google Scholar 

  12. R. Ansari, S. Sahmani, B. Arash, Nonlocal plate model for free vibrations of single-layered graphene sheets. Phys. Lett. A 375, 53 (2010)

    Article  ADS  Google Scholar 

  13. R. Ansari, S. Sahmani, H. Rouhi, Axial buckling analysis of single-walled carbon nanotubes in thermal environments via Rayleigh–Ritz technique. Comput. Mater. Sci. 50, 3050 (2011)

    Article  Google Scholar 

  14. R. Ansari, S. Sahmani, H. Rouhi, Rayleigh–Ritz axial buckling analysis of single-walled carbon nanotubes with different boundary conditions. Phys. Lett. A 375, 1255 (2011)

    Article  ADS  Google Scholar 

  15. Y.G. Hu, K.M. Liew, Q. Wang, X.Q. He, B.I. Yakobson, Nonlocal shell model for elastic wave propagation in single- and double-walled carbon nanotubes. J. Mech. Phys. Solids 56(12), 3475 (2008)

    Article  MATH  ADS  Google Scholar 

  16. R. Ansari, S. Sahmani, Surface stress effects on the free vibration behavior of nanoplates. Int. J. Eng. Sci. 49, 1204 (2011)

    Article  MathSciNet  Google Scholar 

  17. H.S. Shen, L.S. Shen, C.L. Zhang, Nonlocal plate model for nonlinear bending of single-layer graphene sheets subjected to transverse loads in thermal environments. Appl. Phys. A, Mater. Sci. Process. 103, 103 (2011)

    Article  ADS  Google Scholar 

  18. A. Ghorbanpour Arani, M. Hashemian, A. Loghman, M. Mohammadimehr, Study of dynamic stability of the double-walled carbon nanotube under axial loading embedded in an elastic medium by the energy method. J. Appl. Mech. Tech. Phys. 52, 815 (2011)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  19. R. Ansari, S. Sahmani, Bending behavior and buckling of nanobeams including surface stress effects corresponding to different beam theories. Int. J. Eng. Sci. 49, 1244 (2011)

    Article  MathSciNet  Google Scholar 

  20. R. Ansari, R. Gholami, M.A. Darabi, Thermal buckling analysis of embedded single-walled carbon nanotubes with arbitrary boundary conditions using the nonlocal Timoshenko beam theory. J. Therm. Stresses 34, 1271 (2011)

    Article  Google Scholar 

  21. R. Ansari, S. Sahmani, Small scale effect on vibrational response of single-walled carbon nanotubes with different boundary conditions based on nonlocal beam models. Commun. Nonlinear Sci. Numer. Simul. 17, 1965 (2012)

    Article  MathSciNet  ADS  Google Scholar 

  22. C.W. Fan, Y.Y. Liu, C. Hwu, Finite element simulation for estimating the mechanical properties of multi-walled carbon nanotubes. Appl. Phys. A, Mater. Sci. Process. 95(93), 819 (2009)

    Article  ADS  Google Scholar 

  23. R. Ansari, R. Gholami, M.A. Darabi, Nonlinear free vibration of embedded double-walled carbon nanotubes with layerwise boundary conditions. Acta Mech. (2012). doi:10.1007/s00707-012-0718-9

    MathSciNet  Google Scholar 

  24. R. Ansari, R. Gholami, S. Sahmani, On the dynamic stability of embedded single-walled carbon nanotubes including thermal environment effects. Sci. Iran. 19, 919 (2012)

    Article  Google Scholar 

  25. R. Ansari, H. Rouhi, S. Sahmani, Thermal effect on axial buckling behavior of multi-walled carbon nanotubes based on nonlocal shell model. Physica E 44, 373 (2011)

    Article  ADS  Google Scholar 

  26. X. Yao, Q. Han, A continuum mechanics nonlinear post buckling analysis for single-walled carbon nanotubes under torque. Eur. J. Mech. A, Solids 27, 796 (2008)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  27. H.S. Shen, C.L. Zhang, Torsional buckling and post buckling of double-walled carbon nanotubes by nonlocal shear deformable shell model. Compos. Struct. 92, 1073 (2010)

    Article  Google Scholar 

  28. A.R. Setoodeh, M. Khosrownejad, P. Malekzadeh, Exact nonlocal solution for post buckling of single-walled carbon nanotubes. Physica E 43, 1730 (2011)

    Article  ADS  Google Scholar 

  29. L. Wang, Q. Ni, M. Li, Q. Qian, The thermal effect on vibration and instability of carbon nanotubes conveying fluid. Physica E 40, 3179 (2008)

    Article  ADS  Google Scholar 

  30. R. Ansari, M. Hemmatnezhad, J. Rezapour, The thermal effect on nonlinear oscillations of carbon nanotubes with arbitrary boundary conditions. Curr. Appl. Phys. 11, 692 (2011)

    Article  ADS  Google Scholar 

  31. C.M. Wang, Y.Y. Zhang, S.S. Ramesh, S. Kitipornchai, Buckling analysis of micro- and nano-rods/tubes based on nonlocal Timoshenko beam theory. J. Phys. D, Appl. Phys. 39, 3904 (2006)

    Article  ADS  Google Scholar 

  32. S.C. Pradhan, G.K. Reddy, Buckling analysis of single walled carbon nanotube on Winkler foundation using nonlocal elasticity theory and DTM. Comput. Mater. Sci. 50, 1052 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Gholami.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ansari, R., Gholami, R. & Sahmani, S. Prediction of compressive post-buckling behavior of single-walled carbon nanotubes in thermal environments. Appl. Phys. A 113, 145–153 (2013). https://doi.org/10.1007/s00339-012-7502-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-012-7502-5

Keywords

Navigation