Skip to main content
Log in

Finite element simulation for estimating the mechanical properties of multi-walled carbon nanotubes

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

A finite element simulation technique for estimating the mechanical properties of multi-walled carbon nanotubes is developed. In the present modeling concept, individual carbon nanotube is simulated as a frame-like structure and the primary bonds between two nearest-neighboring atoms are treated as beam elements, the beam element properties are determined via the concept of energy equivalence between molecular dynamics and structural mechanics. As to the simulation of the interlayer van der Waals force which has intrinsic nonlinearity and complicated applying region, a simplifying method is proposed that the interlayer pressure caused by van der Waals force instead of the force itself is to be considered, and we make use of the linear part of the interlayer pressure near the equilibrium condition to avoid the nonlinearity in problem, then linear spring elements whose stiffness is determined by equivalent force concept can be utilized to simulate the interlayer van der Waals force such that significant modeling and computing effort is saved in performing the finite element analysis. Numerical examples for estimating the mechanical properties of nanotubes, such as axial and radial Young’s modulus, shear modulus, natural frequency, buckling load, etc., are presented to illustrate the accuracy of this simulation technique. By comparing to the results found in the literature and the possible analytical solutions, it shows that the obtained mechanical properties of nanotubes by the present method agree well with their comparable results. In addition, the relations between these mechanical properties and the nanotube size are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Iijima, Nature 354, 56 (1991)

    Article  ADS  Google Scholar 

  2. M.M.J. Treacy, T.W. Ebbesen, J.M. Gibson, Nature 381, 678 (1996)

    Article  ADS  Google Scholar 

  3. A. Krishmen, E. Dujardin, T.W. Ebbesen, P.N. Yianilos, M.M.J. Treacy, Phys. Rev. Lett. 58, 14013 (1998)

    Google Scholar 

  4. E.W. Wong, P.E. Sheehan, C.M. Lieber, Science 277, 1971 (1997)

    Article  Google Scholar 

  5. A. Poncharal, D.M. Parks, M.C. Boyce, Science 283, 1513 (1999)

    Article  ADS  Google Scholar 

  6. S. Iijima, C. Brabec, A. Maiti, J. Bernholc, J. Chem. Phys. 104, 2089 (1996)

    Article  ADS  Google Scholar 

  7. G. Gao, T. Cagin, W. Goddard III, Nanotechnology 9, 184 (1998)

    Article  ADS  Google Scholar 

  8. P. Zhang, P.E. Lammert, V.H. Crespi, Phys. Rev. Lett. 81, 5346 (1998)

    Article  ADS  Google Scholar 

  9. X. Zhou, J. Zhou, Z. Ou-Yang, Phys. Rev. B 62, 13692 (2000)

    Article  ADS  Google Scholar 

  10. T. Belytschko, S. Xiao, G. Schatz, R. Ruoff, Phys. Rev. B 65, 235 (2002)

    Article  Google Scholar 

  11. P. Zhang, Y. Huang, H. Gao, K.C. Hwang, J. Appl. Mech. Trans. ASME 69, 454 (2002)

    Article  MATH  Google Scholar 

  12. P. Zhang, Y. Huang, P.H. Geubelle, P. Klein, K.C. Hwang, Int. J. Solids Struct. 39, 3893 (2002)

    Article  MATH  Google Scholar 

  13. Y. Jin, F.G. Yuan, Compos. Sci. Technol. 63, 1507 (2003)

    Article  Google Scholar 

  14. C. Li, T.W. Chou, Int. J. Solids Struct. 40, 2487 (2003)

    Article  MATH  Google Scholar 

  15. C. Li, T.W. Chou, Compos. Sci. Technol. 63, 1517 (2003)

    Article  Google Scholar 

  16. C.W. Fan, J.H. Huang, C. Hwu, Y.Y. Liu, Adv. Mater. Res. 33–37, 937 (2008)

    Article  Google Scholar 

  17. K.I. Tserpes, P. Papanikos, Composites B 36, 468 (2005)

    Article  Google Scholar 

  18. B. Kelly, Physics of Graphite (Appl. Sci., London, 1981)

    Google Scholar 

  19. L. Nasdala, G. Ernst, Compt. Mater. Sci. 33, 443 (2005)

    Article  Google Scholar 

  20. X.F. Zhang, X.B. Zhang, G.V. Tendeloo, Ultramicroscopy 54, 237 (1994)

    Article  Google Scholar 

  21. R.M. Jones, Mechanics of Composite Material (Scripta, Washington, 1975)

    Google Scholar 

  22. M. Leonard, Analytical Methods in Vibrations (Macmillan & Co., London, 1967)

    Google Scholar 

  23. R.C. Hibber, Mechanics of Materials (Pearson Prentice Hall, New York, 2005)

    Google Scholar 

  24. C. Li, T.W. Chou, Mech. Solids Mater. 36, 1047 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. W. Fan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fan, C.W., Liu, Y.Y. & Hwu, C. Finite element simulation for estimating the mechanical properties of multi-walled carbon nanotubes. Appl. Phys. A 95, 819–831 (2009). https://doi.org/10.1007/s00339-009-5080-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-009-5080-y

PACS

Navigation