Skip to main content
Log in

Role of graphene waviness on the thermal conductivity of graphene composites

  • Rapid communication
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The waviness effect of graphene nanoplates (GNPs) on the thermal conductivity of GNP-based composites is investigated. Two types of wrinkled GNPs (w-GNPs) and flat GNPs (f-GNPs) are used to fabricate GNP/epoxy composites. Thermal conductivity enhancement is observed in both types of composites. However, under the same processing, f-GNPs exhibit a higher thermal conductivity enhancement than w-GNPs. We finally introduce a concept, the waviness factor, to theoretically analyze the thermal conductivity considering the waviness effect of GNPs. The theoretical predictions are found to show good agreement with experimental observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. K. Novoselov, A. Geim, S. Morozov, D. Jiang, Y. Zhang, S. Dubonos, I. Grigorieva, A. Firsov, Science 306, 666 (2004)

    Article  ADS  Google Scholar 

  2. S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.B.T. Nguyen, R.S. Ruoff, Nature 442, 282 (2006)

    Article  ADS  Google Scholar 

  3. H. Kim, A.A. Abdala, C.W. Macosko, Macromolecules 43, 6515 (2010)

    Article  ADS  Google Scholar 

  4. D. Cai, M. Song, J. Mater. Chem. 20, 7906 (2010)

    Article  Google Scholar 

  5. A.A. Balandin, Nat. Mater. 10, 569 (2011)

    Article  ADS  Google Scholar 

  6. A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau, Nano Lett. 8, 902 (2008)

    Article  ADS  Google Scholar 

  7. S. Ghosh, I. Calizo, D. Teweldebrhan, E. Pokatilov, D. Nika, A. Balandin, W. Bao, F. Miao, C.N. Lau, Appl. Phys. Lett. 92, 151911 (2008)

    Article  ADS  Google Scholar 

  8. K. Chu, C. Jia, L. Jiang, W. Li, Mater. Des. 45, 407 (2013)

    Article  Google Scholar 

  9. K. Chu, C. Jia, H. Guo, W. Li, Mater. Des. 45, 36 (2013)

    Article  Google Scholar 

  10. A. Yu, P. Ramesh, M.E. Itkis, E. Bekyarova, R.C. Haddon, J. Phys. Chem. C 111, 7565 (2007)

    Article  Google Scholar 

  11. W. Lin, R. Zhang, C. Wong, J. Electron. Mater. 39, 268 (2010)

    Article  ADS  Google Scholar 

  12. K. Chu, W. Li, H. Dong, F. Tang, Europhys. Lett. 100, 36001 (2012)

    Article  ADS  Google Scholar 

  13. K. Chu, C. Jia, W. Li, Appl. Phys. Lett. 101, 121916 (2012)

    Article  ADS  Google Scholar 

  14. L. Hu, T. Desai, P. Keblinski, J. Appl. Phys. 110, 033517 (2011)

    Article  Google Scholar 

  15. K. Bui, H.M. Duong, A. Striolo, D.V. Papavassiliou, J. Phys. Chem. C 115, 3872 (2011)

    Article  Google Scholar 

  16. T. Ramanathan, A. Abdala, S. Stankovich, D. Dikin, M. Herrera-Alonso, R. Piner, D. Adamson, H. Schniepp, X. Chen, R. Ruoff, Nat. Nanotechnol. 3, 327 (2008)

    Article  ADS  Google Scholar 

  17. M.A. Rafiee, J. Rafiee, Z. Wang, H. Song, Z.Z. Yu, N. Koratkar, ACS Nano 3, 3884 (2009)

    Article  Google Scholar 

  18. H. Kim, C.W. Macosko, Polymer 50, 3797 (2009)

    Article  Google Scholar 

  19. K. Chu, W. Li, C. Jia, F. Tang, Appl. Phys. Lett. 101, 211903 (2012)

    Article  ADS  Google Scholar 

  20. F. Yavari, H.R. Fard, K. Pashayi, M.A. Rafiee, A. Zamiri, Z. Yu, R. Ozisik, T. Borca-Tasciuc, N. Koratkar, J. Phys. Chem. C 115, 8573 (2011)

    Article  Google Scholar 

  21. S. Ganguli, A.K. Roy, D.P. Anderson, Carbon 46, 806 (2008)

    Article  Google Scholar 

  22. H. Fukushima, L. Drzal, B. Rook, M. Rich, J. Therm. Anal. Calorim. 85, 235 (2006)

    Article  Google Scholar 

  23. F.H. Gojny, M.H.G. Wichmann, B. Fiedler, I.A. Kinloch, W. Bauhofer, A.H. Windle, K. Schulte, Polymer 47, 2036 (2006)

    Article  Google Scholar 

  24. V. Datsyuk, M. Lisunova, M. Kasimir, S. Trotsenko, K. Gharagozloo-Hubmann, I. Firkowska, S. Reich, Appl. Phys. A, Mater. Sci. Process. 105, 781 (2011)

    Article  ADS  Google Scholar 

  25. C.W. Nan, G. Liu, Y. Lin, M. Li, Appl. Phys. Lett. 85, 3549 (2004)

    Article  ADS  Google Scholar 

  26. K.M.F. Shahil, A.A. Balandin, Nano Lett. 12, 861 (2012)

    Article  ADS  Google Scholar 

  27. C. Guthy, F. Du, S. Brand, K.I. Winey, J.E. Fischer, J. Heat Transf. 129, 1096 (2007)

    Article  Google Scholar 

  28. H.K. Jeong, Y.P. Lee, R.J.W.E. Lahaye, M.H. Park, K.H. An, I.J. Kim, C.W. Yang, C.Y. Park, R.S. Ruoff, Y.H. Lee, J. Am. Chem. Soc. 130, 1362 (2008)

    Article  Google Scholar 

  29. F. Deng, Q.S. Zheng, L.F. Wang, C.W. Nan, Appl. Phys. Lett. 90, 021914 (2007)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Fund of China (No. 51165021), the Gansu Province Science Fund for Distinguished Young Scholars (111RJDA0103), and the Doctoral Start-up Scientific Research Fund (2011010431).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ke Chu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chu, K., Li, Ws. & Dong, H. Role of graphene waviness on the thermal conductivity of graphene composites. Appl. Phys. A 111, 221–225 (2013). https://doi.org/10.1007/s00339-012-7497-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-012-7497-y

Keywords

Navigation