Skip to main content
Log in

Anisotropic longitudinal electron diffusion coefficient in wurtzite gallium nitride

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The longitudinal electron diffusion coefficient (D l ) of wurtzite (WZ) gallium nitride (GaN) is calculated by an ensemble Monte Carlo (EMC) method. By using the power spectral density associated with velocity fluctuation, the relationship between D l and electric field strength, frequency, doping concentration and temperature is presented. The anisotropic D l of GaN impacted by anisotropy of the electronic dispersion is also investigated. It has been found that the D l in ΓA direction (c-direction) is larger than that in ΓM direction (basal plane) in most cases. For lower electric field, the D l keeps constant at first, then decreases with increasing frequency. However, for higher electric field, the D l firstly approaches a peak value, then decreases with increasing frequency. When the frequency is zero, the D l decreases with the increasing electric field, and then increases until a peak value. Finally, it decreases with increasing electric field again. When the temperature increases, the D l decreases in both directions for increasing scattering rate. A comparison between our calculated diffusion coefficient and the mobility under low electric field by Einstein equation is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J.B. Limb, D. Yoo, J.H. Ryou, W. Lee, S.C. Shen, R.D. Dupuis, M.L. Reed, C.J. Collins, M. Wraback, D. Hanser, E. Preble, N.M. Williams, K. Evans, Appl. Phys. Lett. 89, 011112 (2006)

    Article  ADS  Google Scholar 

  2. A. Das, J. Heo, M. Jankowski, W. Guo, L. Zhang, H. Deng, P. Bhattacharya, Phys. Rev. Lett. 107, 066405 (2011)

    Article  ADS  Google Scholar 

  3. S. Trieu, X. Jin, A. Ellaboudy, B. Zhang, X.-N. Kang, G.-Y. Zhang, X. Chang, W. Wei, S.Y. Jian, F.X. Xing, Proc. SPIE 7933, 79331Y1 (2011)

    Google Scholar 

  4. B. Gao, H.X. Liu, J.B. Fan, S.L. Wang, IEEE Trans. Electron Devices 58(12), 4290–4296 (2011)

    Article  ADS  Google Scholar 

  5. N. López, L.A. Reichertz, K.M. Yu, K. Campman, W. Walukiewicz, Phys. Rev. Lett. 106, 028701 (2011)

    Article  ADS  Google Scholar 

  6. Y. Jung, X. Wang, J. Kim, S.H. Kim, F. Ren, S.J. Pearton, J. Kim, Appl. Phys. Lett. 100, 231113 (2012)

    Article  ADS  Google Scholar 

  7. S. Sridharan, P.D. Yoder, IEEE Electron Device Lett. 29, 781–783 (2008)

    Article  Google Scholar 

  8. S.K. O’Leary, B.E. Foutz, M.S. Shur, L.F. Eastman, J. Mater. Sci., Mater. Electron. 17, 87–126 (2006)

    Article  Google Scholar 

  9. M. Wraback, H. Shen, S. Rudin, E. Bellotti, M. Goano, J.C. Carrano, C.J. Collins, J.C. Campbell, R.D. Dupuis, Appl. Phys. Lett. 82, 3674–3676 (2003)

    Article  ADS  Google Scholar 

  10. F. Schwierz, Solid-State Electron. 49, 889–895 (2005)

    Article  ADS  Google Scholar 

  11. M. Farahmand, C. Garetto, E. Bellotti, K.F. Brennan, M. Goano, E. Ghillino, G. Ghione, J.D. Albrecht, P.P. Ruden, IEEE Trans. Electron Devices 48, 535–542 (2001)

    Article  ADS  Google Scholar 

  12. H. Tokuda, K. Kodama, M. Kuzuhara, Appl. Phys. Lett. 96, 252103 (2010)

    Article  ADS  Google Scholar 

  13. C. Jacoboni, L. Reggiani, Rev. Mod. Phys. 55, 645–705 (1983)

    Article  ADS  Google Scholar 

  14. C. Jacoboni, Theory of Electron Transport in Semiconductors (Springer, Berlin, 2010), pp. 207–216

    Google Scholar 

  15. G.A. Umana-Membrenoa, T.B. Fehlberga, S. Kollurib, D.F. Brownb, G. Parisha, B.D. Nenera, S. Kellerb, U.K. Mishrab, L. Faraonea, Microelectron. Eng. 88, 1079–1082 (2011)

    Article  Google Scholar 

  16. C. Mauder, B. Reuters, L. Rahimzadeh Khoshroo, M.V. Rzheutskii, E.V. Lutsenko, G.P. Yablonskii, J.F. Woitok, M. Heuken, H. Kalisch, R.H. Jansen, J. Cryst. Growth 312, 1823–1827 (2010)

    Article  ADS  Google Scholar 

  17. G. Hill, P.N. Robson, W. Fawcett, J. Appl. Phys. 50, 356–360 (1979)

    Article  ADS  Google Scholar 

  18. R. Fauquembergue, J. Zimmermann, A. Kaszynski, G. Microondes, E. Constant, J. Appl. Phys. 51, 1065–1071 (1980)

    Article  ADS  Google Scholar 

  19. R. Brunetti, C. Jacoboni, Phys. Rev. B 29, 5739–5748 (1984)

    Article  ADS  Google Scholar 

  20. M. Deb Roy, B.R. Nag, Appl. Phys. A 28, 195–204 (1982)

    Article  ADS  Google Scholar 

  21. W. Shockley, J.A. Copeland, R.P. James, in Quantum Theory of Atoms, Molecules, Solid State (Academic Press, New York, 1966), pp. 537–563

    Google Scholar 

  22. R. Brunetti, C. Jacoboni, F. Nava, L. Reggiani, G. Bosman, R.J.J. Zijlstra, J. Appl. Phys. 52, 6713–6722 (1981)

    Article  ADS  Google Scholar 

  23. H. Brooks, C. Herring, Phys. Rev. 83, 879 (1951)

    Google Scholar 

  24. C. Herring, E. Vogt, Phys. Rev. 101, 944 (1956)

    Article  ADS  MATH  Google Scholar 

  25. M. Goano, E. Bellotti, E. Ghillino, G. Ghione, K.F. Brennan, J. Appl. Phys. 88, 6467–6475 (2000)

    Article  ADS  Google Scholar 

  26. R.P. Joshi, S. Viswanadha, P. Shah, R.D. del Rosario, J. Appl. Phys. 93, 4836–4842 (2000)

    Article  ADS  Google Scholar 

  27. M. Deb Roy, B.R. Nag, Appl. Phys. A 26, 131–136 (1981)

    Article  ADS  Google Scholar 

  28. V.M. Polyakov, F. Schwierz, Appl. Phys. Lett. 88, 032101 (2006)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Project of National Natural Science Foundation of China (Grant Nos. 60976068, 61076097), in part by Specialized Research Fund for the Doctoral Program of High Education. (Grant No. 20110203110012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shulong Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, S., Liu, H., Fan, J. et al. Anisotropic longitudinal electron diffusion coefficient in wurtzite gallium nitride. Appl. Phys. A 112, 933–938 (2013). https://doi.org/10.1007/s00339-012-7451-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-012-7451-z

Keywords

Navigation