Skip to main content

Advertisement

Log in

Electron Momentum and Energy Relaxation Times in Wurtzite GaN, InN and AlN: A Monte Carlo Study

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Electron relaxation process and transport property of hot electrons in wurtzite GaN, InN and AlN are investigated by an ensemble Monte Carlo (EMC) method using the classic three valleys model. Both momentum and energy relaxation processes are studied here, taking into account the effect of temperature and electric field. It can be found that under different electric fields the relaxation mechanisms are much different for the existence of satellite valley structures in III-nitrides. The momentum and energy relaxation processes of InN are different from that of GaN and AlN for the much smaller effective electron mass in the lowest valley of InN. The polar optical phonon scattering is the main energy relaxation process when the electric field is lower, but inter-valley scattering will dominate the energy relaxation process when the electric field is high. The main momentum relaxation mechanisms are ionized impurity, acoustic phonon, and polar optical phonon scattering at lower electric field, but polar optical phonon and inter-valley scattering are the main momentum relaxation mechanisms when the electric field becomes higher. The momentum relaxation time is much lower than the energy relaxation time, the reason is that nearly all scattering mechanisms relax momentum, but only polar optical phonon and inter-valley scattering relax electron energy. The temperature can affect the momentum and energy relaxation by the role in scattering. Finally, the momentum and energy relaxation times as a function of electron temperature are given, which can be used for relaxation time modeling and device transport research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Shen, S. Heikman, B. Moran, R. Coffie, and N.Q. Zhang, IEEE Trans. Electron Devices L 22, 457 (2001).

    Article  Google Scholar 

  2. A. Iniguez-De-La-Torre, I. Iniguez-De-La-Torre, and J. Mateos, J. Appl. Phys. 111, 2104 (2012).

    Article  Google Scholar 

  3. K. Yalavarthi, V. Chimalgi, and V.S. Ahmed, Opt. Quant. Electron. 46, 925 (2014).

    Article  Google Scholar 

  4. X. Wang, Y. Zhang, X. Chen, M. He, and C. Liu, Nanoscale 6, 12009 (2014).

    Article  Google Scholar 

  5. A. Wakejima, A. Ando, A. Watanabe, K. Inoue, and T. Kubo, Appl. Phys. Express 8, 37 (2015).

    Article  Google Scholar 

  6. W. Saito, Y. Takada, M. Kuraguchi, K. Tsuda, and I. Omura, 50(12), 2528 (2004).

  7. H. Onodera, H. Hanawa, and K. Horio, Phys. Status Solidi C 13, 499 (2016).

    Google Scholar 

  8. Z. Liu, J. Pan, T. Kako, K. Ishikawa, and K. Takeda, Jpn. J. Appl. Phys. 54, 06GB04 (2015).

    Article  Google Scholar 

  9. M. Smolik and A. Kowalik, J. Appl. Phys. 119, 79870G (2016).

    Google Scholar 

  10. C.K. Tan, D. Borovac, W. Sun, N. Tansu, and C.K. Tan, Sci. Rep. 6, 24412-1 (2016).

    Google Scholar 

  11. R. Koester, D. Sager, W.A. Quitsch, and O. Pfingsten, Nano Lett. 15, 2318 (2015).

    Article  Google Scholar 

  12. M. Farahmand, C. Garetto, E. Bellotti, and K.F. Brennan, IEEE Trans. Electron Devices 48, 535 (2001).

    Article  Google Scholar 

  13. D.A. Browne, B. Mazumder, Y.R. Wu, and J.S. Speck, J. Appl. Phys. 117, 185703-1 (2015).

    Article  Google Scholar 

  14. W.A. Hadi, M.S. Shur, and S.K. O’Leary, J. Mater. Sci. Mater. El. 24, 2 (2013).

    Article  Google Scholar 

  15. W.A. Hadi, M.S. Shur, and S.K. O’Leary, J. Mater. Sci Mater. El. 25, 4675 (2014).

    Article  Google Scholar 

  16. W. H. Abdul, University of Windsor, 2014.

  17. P. Siddiqua, W.A. Hadi, M.S. Shur, and S.K. O’Leary, J. Mater. Sci Mater. El. 26, 4475 (2015).

    Article  Google Scholar 

  18. P. Siddiqua and S.K. O’Leary, J. Appl. Phys. 119, 095104 (2016).

    Article  Google Scholar 

  19. P. Siddiqua, W.A. Hadi, A.K. Salhotra, M.S. Shur, and S.K. O’Leary, J. Appl. Phys. 117, 125705 (2015).

    Article  Google Scholar 

  20. J.M. Barker, R. Akis, T.J. Thornton, D.K. Ferry, and S.M. Goodnick, Phys. Status Solidi 314, 39 (2002).

    Google Scholar 

  21. M. Singh, Y.R. Wu, and J. Singh, IEEE Trans. Electron Devices 52, 311 (2005).

    Article  Google Scholar 

  22. S. Wang, H. Liu, and B. Gao, Phys. Status Solidi B 249, 1761 (2012).

    Article  Google Scholar 

  23. V.S. Katti and S.S. Kubakaddi, E Phys. 44, 156 (2011).

    Article  Google Scholar 

  24. V.N. Sokolov, K.W. Kim, V.A. Kochelap, and D.L. Woolard, J. Appl. Phys. 98, 3096 (2005).

    Article  Google Scholar 

  25. C. Quan, J. Comput. Electron. 13, 329 (2014).

    Article  Google Scholar 

  26. C. Quan, Solid State Electron. 94, 66 (2014).

    Google Scholar 

  27. L. Jari, A. Manuel, N. Daniel, G.D. Wulf, K. Karol, J.G. Antonio, and P. Djordje, IEEE Trans. Electron Devices 61, 423 (2014).

    Article  Google Scholar 

  28. ATLAS User’s Manual, 136 (2013).

  29. R. Stratton, Phys. Rev. 126, 2002 (1962).

    Article  Google Scholar 

  30. R.C. Chen and J.L. Liu, (World Scientific and Engineering Academy and Society (WSEAS) Stevens Point, Wisconsin, 2011), vol. 6 (3), pp. 55–60.

  31. V. Palankovski, B. Gonzales, H. Kosina, A. Hernandez, and S. Selberherr, in Proceedings 2nd International Conference Modeling and Simulation of Microsystems, vol. 43 (9), pp. 1791–1795 (1999).

  32. A. Matulionis, J. Liberis, L. Ardaravicius, M. Ramonas, and I. Matulioniene, Semicond. Sci. Tech. 17, L9 (2002).

    Article  Google Scholar 

  33. A. Matulionis, J. Liberis, E. ŠermukŠnis, J. Xie, and J.H. Leach, Semicond. Sci. Tech. 23, 075048 (2008).

    Article  Google Scholar 

  34. J.Z. Zhang, J. Appl. Phys. 115, 202117 (2014).

    Google Scholar 

  35. J.Z. Zhang, A. Dyson, and B.K. Ridley, J. Appl. Phys. 117, 075048 (2015).

    Google Scholar 

  36. Y. Li, J. Zhang, J. Zhang, Z. Wang, and W. Mao, Semicond. Sci. Tech. 31, 025016 (2016).

    Article  Google Scholar 

  37. H. Ye, G.W. Wicks, and P.M. Fauchet, Appl. Phys. Lett. 74, 711 (1999).

    Article  Google Scholar 

  38. B. Gonzaleza, V. Palankovskib, H. Kosinab, A. Hernandeza, and S. Selberherr, Solid State Electron. 43, 1791 (1999).

    Article  Google Scholar 

  39. S.C. Lee and T.W. Tang, Computational Electronics, Vol. 113 (Berlin: Springer, 1991), pp. 127–130.

    Book  Google Scholar 

  40. D. Vasileska, K. Raleeva, S. M. Goodnick, C. Ringhofer, S.S. Ahmed, Monte Carlo Device Simulations, (2011).

  41. C. Jacoboni and L. Reggiani, Rev. Mod. Phys. 55, 645 (1983).

    Article  Google Scholar 

  42. E. Conwell and V.P. Weisskopf, Phys. Rev. 77, 388 (1950).

    Article  Google Scholar 

  43. M. Farahmand, C. Garetto, E. Bellotti, and K.F. Brennan, IEEE Trans. Electron Devices 48, 535 (2001).

    Article  Google Scholar 

  44. S.L. Wang, H.X. Liu, and B. Gao, J. Appl. Phys. 111, 032101 (2012).

    Google Scholar 

  45. S.K. O’Leary, B.E. Foutz, M.S. Shur, and L.F. Eastman, GaN, AlN, and InN: a Review. J. Mater. Sci.: Mater. Electron. 17, 87 (2006).

    Google Scholar 

  46. V.M. Polyakov and F. Schwierz, Appl. Phys. Lett. 88, 119 (2006).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China (Grant Nos. 61504100, 61376099) and Specialized Research Fund for the Doctoral Program of High Education (No. 2015M582612).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongxia Liu or Zhiyu Lin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Dou, Y., Liu, H. et al. Electron Momentum and Energy Relaxation Times in Wurtzite GaN, InN and AlN: A Monte Carlo Study. J. Electron. Mater. 47, 1560–1568 (2018). https://doi.org/10.1007/s11664-017-5922-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5922-x

Keywords

Navigation