Skip to main content
Log in

Structure and dielectric behavior of TlSbS2

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

A comparison of structure and dielectric properties of TlSbS2 thin films, deposited in different thicknesses (400–4100 Å) by thermal evaporation of TlSbS2 crystals that were grown by the Stockbarger–Bridgman technique and the bulk material properties of TlSbS2 are presented. Dielectric constant ε 1 and dielectric loss ε 2 have been calculated by measuring capacitance and dielectric loss factor in the frequency range 20 Hz–10 KHz and in the temperature range 273–433 K. It is observed that at 1 kHz frequency and 293 K temperature the dielectric constant of TlSbS2 thin films is ε 1=1.8–6 and the dielectric loss of TlSbS2 thin films is ε 2=0.5–3 depending on film thickness. In the given intervals, both of dielectric constant and dielectric loss decrease with frequency, but increase with temperature. The maximum barrier height W m is calculated from the dielectric measurements. The values of W m for TlSbS2 films and bulk are obtained as 0.56 eV and 0.62 eV at room temperature, respectively. The obtained values agree with those proposed by the theory of hopping over the potential barrier. The temperature variation of ac conductivity can be reasonably interpreted in terms of the correlated barrier hopping model since it obeys the ω s law with a temperature dependent s (s<1) and going down as the temperature is increased. The temperature coefficient of capacitance (TCC) and permittivity (TCP) are evaluated for both thin films and bulk material of TlSbS2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. D.V. Gitsu, I.N. Grincheshen, N.N. Syrbu, V.F. Krasovskii, V.I. Moroza, Sov. Phys. Dokl. 34, 5 (1989)

    Google Scholar 

  2. V.F. Zhitar, N.S. Popovich, D.V. Gitsu, S.I. Radautsan, Sov. Phys. Semicond. 8, 644 (1974)

    Google Scholar 

  3. V.F. Krasovskii, I.N. Grincheshe, M.M. Markus, N.S. Popovich, Neorg. Mater. 24, 2074 (1988)

    Google Scholar 

  4. V.A. Bazakutsa, L.G. Voinova, L.P. Zozulya, N.N. Ivanova, Russ. Phys. J. 15, 1644 (1972)

    Google Scholar 

  5. N. Grincheshen, N.S. Popovich, Fiz. Tekh. Poluprovodn. 19, 230 (1985)

    Google Scholar 

  6. O. Valassiades, S.K. Polychroniadis, J. Stoemenos, N.A. Economou, Phys. Status Solidi (a) 65, 215 (1981)

    Article  ADS  Google Scholar 

  7. F.I. Ezema, S.C. Ezugwu, P.U. Asogwa, A.B.C. Ekwealor, J. Ovonic Res. 5, 145 (2009)

    Google Scholar 

  8. K. Hoang, S.D. Mahanti, Phys. Rev. B 77, 205107 (2008)

    Article  ADS  Google Scholar 

  9. B. Yan, C.X. Liu, H.J. Zhang, C.Y. Yam, X.L. Qi, T. Frauenheim, S.C. Zhang, Europhys. Lett. 90, 37002 (2010)

    Article  ADS  Google Scholar 

  10. Y. Jafarov, I. Babanly, S. Imamalieva, M. Babanly, Inorg. Mater. 47, 579 (2011)

    Article  Google Scholar 

  11. P. Rouquette, B. Gil, J. Camassel, Phys. Rev. B 39, 1837 (1989)

    Article  ADS  Google Scholar 

  12. P. Rouquette, J. Allegre, H. Mathieu, C. Ance, J. Oliver-Fourcade, Solid State Commun. 59, 12 (1986)

    Article  Google Scholar 

  13. M. Merkel, C. Kleint, H. Neumann, J. Horak, Cryst. Res. Technol. 28, 629 (1993)

    Article  Google Scholar 

  14. O. Madelung (ed.), Semiconductors other that Group IV Elements and III–V Compounds. Data in Science and Technology (Springer, Berlin, 1992)

    Google Scholar 

  15. K. Cermak, P. Lostak, Czechoslov. J. Phys. 36, 709 (1986)

    Article  ADS  Google Scholar 

  16. G. Leveque, J.O. Fourcade, J.C. Jumas, J. Phys. Condens. Matter 4, 887 (1992)

    Article  ADS  Google Scholar 

  17. K. Cermak, G. Juska, Phys. Status Solidi A 91, 219 (1985)

    Article  ADS  Google Scholar 

  18. L.P. Zozulya, L.G. Voinova, V.A. Bazakutsa, Sov. Phys. J. 16, 1218 (1973)

    Article  Google Scholar 

  19. V. Estrella, M.T.S. Nair, P.K. Nair, Semicond. Sci. Technol. 17, 1198 (2002)

    Article  ADS  Google Scholar 

  20. J. Tauc, R. Grigorovici, A. Vancu, Phys. Status Solidi 15, 627 (1966)

    Article  Google Scholar 

  21. S. Yildirim, K. Ulutas, D. Deger, E.O. Zayim, I. Turhan, Vacuum 77, 329–335 (2005)

    Article  Google Scholar 

  22. D. Deger, K. Ulutas, Vacuum 72, 307 (2004)

    Article  Google Scholar 

  23. B. Tareev, Physics of Dielectrics (MIR, Moscow, 1979)

    Google Scholar 

  24. J.C. Giuntini, J.V. Zancheha, J. Non-Cryst. Solids 34, 57 (1979)

    Article  Google Scholar 

  25. B. Durand, G. Taillades, A. Pradel, M. Ribes, J.C. Badot, N. Belhadj-Tahar, J. Non-Cryst. Solids 1306, 172 (1994)

    Google Scholar 

  26. A. Ghosh, Phys. Rev. B 41, 1479 (1990)

    Article  ADS  Google Scholar 

  27. A.R. Long, Adv. Phys. 31, 553 (1982)

    Article  ADS  Google Scholar 

  28. D. Deger, K. Ulutas, S. Yildirim, N. Kalkan, Physica B, Condens. Matter 404, 5231 (2009)

    Article  ADS  Google Scholar 

  29. N. Kalkan, S. Yıldırım, K. Ulutaş, D. Deger, J. Electron. Mater. 37, 157 (2008)

    Article  ADS  Google Scholar 

  30. M. Ozer, K.M. Paraskevopoulos, A.N. Anagnostopoulos, S. Kokou, E.K. Polychroniadis, Semicond. Sci. Technol. 11, 1405 (1996)

    Article  ADS  Google Scholar 

  31. P. Bohac, E. Brönnimann, A. Gaumann, Mater. Res. Bull. 9, 1033 (1974)

    Article  Google Scholar 

  32. M.A. Afifi, A.D. Bekheet, E. Abd Elwahhab, H.E. Athiya, Vacuum 61, 9 (2001)

    Article  Google Scholar 

  33. A.M. Farid, A.D. Bekheet, Vacuum 59, 932 (2000)

    Article  Google Scholar 

  34. D. Xue, K. Betzler, H. Hesse, D. Lammers, Phys. Status Solidi (b) 216, R7 (1999)

    Article  ADS  Google Scholar 

  35. P. Matheswaran, R. Sathyamoorthy, R. Saravanakumar, S. Velumani, Mater. Sci. Eng. B 174, 242 (2010)

    Article  Google Scholar 

  36. S.R. Elliot, Philos. Mag. 36, 1291 (1977)

    Article  ADS  Google Scholar 

  37. S.R. Elliot, Philos. Mag., B 37, 135 (1978)

    Article  Google Scholar 

  38. A.K. Jonsher, Nature 267, 673 (1977)

    Article  ADS  Google Scholar 

  39. A.M. Farid, H.E. Atyia, N.A. Hegab, Vacuum 80, 284 (2005)

    Article  Google Scholar 

  40. L.G. Austin, N.F. Mott, Adv. Phys. 18, 41 (1969)

    Article  ADS  Google Scholar 

  41. N.F. Mott, E.A. Davis, Electronic Processes in Non-crystalline Materials (Clarendon Press, Oxford, 1971)

    Google Scholar 

  42. F. Argall, A.K. Jonscher, Thin Solid Films 2, 185 (1968)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We would like to thank Professor Mehmet Ozer who grew the samples. This work was supported by the Research Fund of the Istanbul University, Projects: 3569/2010 and 6481/2010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Deger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parto, M., Deger, D., Ulutas, K. et al. Structure and dielectric behavior of TlSbS2 . Appl. Phys. A 112, 911–918 (2013). https://doi.org/10.1007/s00339-012-7446-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-012-7446-9

Keywords

Navigation