Skip to main content
Log in

Anisotropic and dielectric properties of TlSbSe2 chalcogenide compounds

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A comprehensive analysis of the electrical conductivity of TlSbSe2 layered compounds prepared using the Bridgman–Stockbarger technique is presented. The temperature dependence of the electrical conductivity of TlSbSe2 and its anisotropy (as measured parallel and perpendicular to the layers) was studied for temperatures between 233 and 353 K. We show that the anisotropy of the electrical conductivity is temperature dependent. The ratio α of the conductivities parallel and perpendicular to the layers obeys an exponential law, with a barrier height of about 37 meV. The dielectric constant and dielectric loss of TlSbSe2 were determined using ohmic Au electrodes in the frequency range 10 Hz–100 kHz and within the temperature interval 233–373 K. The dielectric constant and the dielectric loss are found to decrease with increasing frequency and increase with increasing temperature. These behaviors are due to the polarization mechanisms in the samples. Lastly the activation energy values were derived from dielectric measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. K. Tanaka, K. Shimakawa, Amorphous chalcogenide semiconductors and related materials (Springer, New York, 2011)

    Book  Google Scholar 

  2. R. Wang, Amorphous chalcogenides; advanced and applications (Pan Stanford publishing, Singapore, 2011)

    Google Scholar 

  3. U. Gertnes, Photo induced surface modulation in amorphous chalcogenide, Ph. D. Thesis, Riga (2015)

  4. M. Reinfelde, J. Teteris, J. Non-Cryst. Solids 377, 162 (2013)

    Article  Google Scholar 

  5. J. Teteris, U. Gertnes, M. Reinfelde, Phys. Status Solidi C 8, 2780 (2011)

    Article  Google Scholar 

  6. A. Stronski, E. Achimova, O. Paluk, A. Meshalkin et al., Nanoscale Res. Lett. (2016). doi:10.1184/s11671-016-1235-x

    Google Scholar 

  7. R. Fairman, B. Ushkov, Semiconducting chalcogenide glass I (Elsevier, Academic Press, USA, 2004)

    Google Scholar 

  8. N. Mehta, J. Sci. Ind. Res. 65, 777 (2006)

    Google Scholar 

  9. D.K. Dwivedi et al., Am. J. Mater. Sci. Eng. 1, 46 (2013)

    Google Scholar 

  10. F.A. Al-Agel, Nanoscale Res. Lett. 8, 520 (2013)

    Article  Google Scholar 

  11. N. Kalkan, S. Yildirim, K. Ulutas, D. Deger, J. Electron. Mater. 37, 157 (2008)

    Article  Google Scholar 

  12. K. Chrissafis, M. Ozer, E. Vinga, E. Polychroniadis, X. Chatzistavrou, K.M. Paraskevopoulos, J. Therm. Anal. Calorim. 86, 839 (2006)

    Article  Google Scholar 

  13. D.V. Gitsu, I.N. Grincheshen, N.S. Popovich, Phys. Stat. Sol. a 72, K113 (1982)

    Article  Google Scholar 

  14. D.V. Gitsu, I.N. Grincheshen, N.S. Popovich, Phys. Stat. Sol. a 76, K5 (1983)

    Article  Google Scholar 

  15. I.N. Grincheshen, N.S. Popovich, A.A. Shtanov, Phys. Stat. Sol. a 85, K85 (1984)

    Article  Google Scholar 

  16. J. Banys, J. Grigas, V. Valiukenas, K. Wacker, Sol. Stat. Commun. 82, 633 (1992)

    Article  Google Scholar 

  17. J. Ren, M.H. Whangbo, Chem. Mater. 5, 1018 (1993)

    Article  Google Scholar 

  18. N.N. Syrbu, V.T. Krasovsky, I.N. Grincheshen, Cryst. Res. Technol. 28, 371 (1993)

    Article  Google Scholar 

  19. K. Ulutas, N. Kalkan, S. Yıldırım, D. Deger, Cryst. Res. Technol. 40, 898 (2005)

    Article  Google Scholar 

  20. N. Kalkan, S. Yıldırım, D. Deger, K. Ulutas, Y. Gürkan Çelebi, Mater. Res. Bull. 40, 936 (2005)

    Article  Google Scholar 

  21. K. Hoang, S.D. Mahanti, Phys. Rev. B 77, 205107 (2008)

    Article  Google Scholar 

  22. H. Lin, R.S. Markiewicz, L.A. Wray, L. Fu, M.Z. Hasan, A. Bansil, Phys. Rev. Lett. 105, 036404 (2010)

    Article  Google Scholar 

  23. S.V. Eremeev, G. Bihlmayer, M. Vergniory, Y. Koroteev, T.V. Menshchikova, J. Henk, A. Ernst, E.V. Chulkov, Phys. Rev. B 83, 205129 (2011)

    Article  Google Scholar 

  24. R.E. Hummel, Electronic properties of materials, 2nd edn. (Springer, New York, 1993)

    Book  Google Scholar 

  25. A.N. Anagnostopoulos, C. Manolikas, D. Papadopoulos, Phys. Stat. Sol. a 77, 595 (1983)

    Article  Google Scholar 

  26. D.S. Kyriakos, A.N. Anagnostopoulos, J. Appl. Phys. 58, 3917 (1985)

    Article  Google Scholar 

  27. M.P. Hanias, A.N. Anagnostopoulos, K. Kambas, J. Spyridelis, Mater. Res. Bull. 27, 25 (1992)

    Article  Google Scholar 

  28. M. Ozer, N. Kalkan, K.G. Kyritsi, K.M. Paraskevopoulos, A.N. Anagnostopoulos, G. Stergioudis, E.K. Polychroniadis, Phys. Stat. Sol. a 193, 3 (2002)

    Article  Google Scholar 

  29. L.K. Gallos, A.N. Anagnostopoulos, P. Argyrakis, Phys. Rev. B 50, 49 (1994)

    Article  Google Scholar 

  30. M. Ozer, K.M. Paraskevopoulos, A.N. Anagnostopoulos, S. Kokou, E.K. Polychroniadis, Semicond. Sci. Technol. 11, 1405 (1996)

    Article  Google Scholar 

  31. K. Shimakawa, Philos Mag. 46, 123 (1982)

    Article  Google Scholar 

  32. L.S. Palatnik et al., Vacuum 24, 142 (1974)

    Google Scholar 

  33. D. Deger, K. Ulutas, S. Yakut, H. Kara, Mater. Sci. Semicon. Proc. 38, 1 (2015)

    Article  Google Scholar 

  34. S. Yildirim, K. Ulutas, D. Deger, E.O. Zayim, I. Turhan, Vacuum 77, 329 (2005)

    Article  Google Scholar 

  35. B. Tareev, Physics of dielectric materials (MIR Publications, Moscow, 1979), p. 107

    Google Scholar 

  36. J.C. Giuntini, J.V. Zancheha, Non-Cryst. Solids 34, 57 (1979)

    Article  Google Scholar 

  37. S.R. Elliott, Philos. Mag. B 36, 1291 (1978)

    Article  Google Scholar 

  38. S.R. Elliott, Philos. Mag. B 37, 135 (1978)

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank Prof. Dr. Mehmet Ozer, who grew the samples and Doç. Dr. Ayşe Kızılersu and Dr. Sefa Celik for their many helpful contributions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Kalkan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baş, H., Kalkan, N. & Deger, D. Anisotropic and dielectric properties of TlSbSe2 chalcogenide compounds. J Mater Sci: Mater Electron 27, 7518–7523 (2016). https://doi.org/10.1007/s10854-016-4731-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-4731-y

Keywords

Navigation