Skip to main content
Log in

Magneto-electronic properties and spin-resolved I–V curves of a Co/GeSe heterojunction diode: an ab initio study

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We present ab initio calculations of magnetoelectronic and transport properties of the interface of hcp Cobalt (001) and the intrinsic narrow-gap semiconductor germanium selenide (GeSe). Using a norm-conserving pseudopotentials scheme within DFT, we first model the interface with a supercell approach and focus on the spin-resolved densities of states and the magnetic moment (spin and orbital components) at the different atomic layers that form the device. We also report a series of cuts (perpendicular to the plane of the heterojunction) of the electronic and spin densities showing a slight magnetization of the first layers of the semiconductor. Finally, we model the device with a different scheme: using semiinfinite electrodes connected to the heterojunction. These latter calculations are based upon a nonequilibrium Green’s function approach that allows us to explore the spin-resolved electronic transport under a bias voltage (spin-resolved I–V curves), revealing features of potential applicability in spintronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. M.N. Baibich, J.M. Broto, A. Fert, F. Nguyen van Dau, F. Petroff, P. Etienne, G. Creuzet, A. Friederich, J. Chazelas, Phys. Rev. Lett. 61, 2472 (1988)

    Article  ADS  Google Scholar 

  2. R.Y. Yuan, R.Z. Wang, K. Xue, J.S. Wei, X.M. Song, B. Wang, H. Yan, Phys. Rev. B 74, 024417 (2006)

    Article  ADS  Google Scholar 

  3. P. Yordanov, A.V. Boris, J.W. Freeland, J.J. Kavich, J. Chakhalian, H.N. Lee, B. Keimer, Phys. Rev. B 84, 045108 (2011)

    Article  ADS  Google Scholar 

  4. A.G. Petukhov, D.O. Demchenko, A.N. Chantis, Phys. Rev. B 68, 125332 (2003)

    Article  ADS  Google Scholar 

  5. H. Oka, K. Tao, S. Wedekind, G. Rodary, V.S. Stepanyuk, D. Sander, J. Kirschner, Phys. Rev. Lett. 107, 187201 (2011)

    Article  ADS  Google Scholar 

  6. A.N. Useinov, J. Kosel, N.K. Useinov, L.R. Tagirov, Phys. Rev. B 84, 085424 (2011)

    Article  ADS  Google Scholar 

  7. R. Yamada, M. Noguchi, H. Tada, Appl. Phys. Lett. 98, 053110 (2011)

    Article  ADS  Google Scholar 

  8. I. Žutic, J. Fabian, S. Das Sarma, Rev. Mod. Phys. 76, 323 (2004)

    Article  ADS  Google Scholar 

  9. J.A.C. Bland, B. Heinrich (eds.), Ultrathin Magnetic Structures IV (Springer, Berlin, 2003)

    Google Scholar 

  10. G. Sun, R.A. Soref, H.H. Cheng, J. Appl. Phys. 108, 033107 (2010)

    Article  ADS  Google Scholar 

  11. K. Miyata, D.L. Dreifus, K. Kobashi, Appl. Phys. Lett. 60(4), 480 (1992)

    Article  ADS  Google Scholar 

  12. Y.-F. Qin, S.-S. Yan, S.-S. Kang, S.-Q. Xiao, Q. Li, Z.-Q. Dai, T.-T. Shen, Y.-Y. Dai, G.-L. Liu, Y.-X. Chen, L.-M. Mei, Z. Zhang, Chin. Phys. Lett. 28(10), 107501 (2011)

    Article  ADS  Google Scholar 

  13. Y.F. Tian, J.X. Deng, S.S. Yan, Y.Y. Dai, M.W. Zhao, Y.X. Chen, G.L. Liu, L.M. Mei, Z.Y. Liu, J.R. Sun, J. Appl. Phys. 107, 024514 (2010)

    Article  ADS  Google Scholar 

  14. B. Stärk, P. Krüger, J. Pollmann, Phys. Rev. B 81, 035321 (2010)

    Article  ADS  Google Scholar 

  15. T.T. Ong, A.M. Black-Schaffer, W. Shen, B.A. Jones, Phys. Rev. B 82, 054429 (2010)

    Article  ADS  Google Scholar 

  16. T. Ozaki, K. Nishio, H. Kino, Phys. Rev. B 81, 035116 (2010)

    Article  ADS  Google Scholar 

  17. T. Ozaki, Phys. Rev. B 67, 155108 (2003)

    Article  ADS  Google Scholar 

  18. T. Ozaki, H. Kino, Phys. Rev. B 69, 195113 (2004)

    Article  ADS  Google Scholar 

  19. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  20. J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 78, 1396 (1997)

    Article  ADS  Google Scholar 

  21. J.P. Perdew, S. Kurth, A. Zupan, P. Blaha, Erratum: Accurate density functional with correct formal properties: a step beyond the generalized gradient approximation. Phys. Rev. Lett. 82, 5179 (1999). [Phys. Rev. Lett. 82, 2544 (1999)]

    Article  ADS  Google Scholar 

  22. J. Chen, X. Wu, A. Selloni, Phys. Rev. B 83, 245204 (2011)

    Article  ADS  Google Scholar 

  23. A.B. Shick, O.N. Mryasov, Phys. Rev. B 67, 172407 (2003)

    Article  ADS  Google Scholar 

  24. A. Onodera, I. Sakamoto, Y. Fujii, N. Môri, S. Sugai, Phys. Rev. B 56(13), 7935 (1997)

    Article  ADS  Google Scholar 

  25. H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976)

    Article  MathSciNet  ADS  Google Scholar 

  26. L. Hongxia, Z. Heming, Z. Zhiyong, J. Semicond. 30(5), 052002 (2009)

    Article  ADS  Google Scholar 

  27. K. Nishio, T. Ozaki, T. Morishita, M. Mikami, Phys. Rev. B 81, 115444 (2010)

    Article  ADS  Google Scholar 

  28. T. Ozaki, K. Nishio, H. Weng, H. Kino, Phys. Rev. B 81, 075422 (2010)

    Article  ADS  Google Scholar 

  29. H. Jippo, M. Ohfuchi, C. Kaneta, Phys. Rev. B 84, 075467 (2011)

    Article  ADS  Google Scholar 

  30. M. Ohfuchi, T. Ozaki, C. Kaneta, Appl. Phys. Express 4, 095101 (2011)

    Article  ADS  Google Scholar 

  31. A. Kokalj, Comput. Mater. Sci. 28, 155 (2003). Code available from http://www.xcrysden.org/

    Article  Google Scholar 

  32. K. Momma, F. Izumi, J. Appl. Crystallogr. 44, 1272 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and the Universidad Nacional de Entre Ríos (UNER), Argentina; and the work of the developers of Xcrysden [31] and VESTA [32] codes, utilized in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonardo Makinistian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Makinistian, L., Albanesi, E.A. Magneto-electronic properties and spin-resolved I–V curves of a Co/GeSe heterojunction diode: an ab initio study. Appl. Phys. A 111, 923–927 (2013). https://doi.org/10.1007/s00339-012-7315-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-012-7315-6

Keywords

Navigation