Skip to main content
Log in

Selective InAs/GaSb strained layer superlattice etch stop layers for GaSb substrate removal

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

This paper reports the use of an InAs/GaSb strained layer superlattice (SLS) as an etch stop layer for GaSb substrate removal with a BCl3/SF6 etch chemistry. Optimum chamber conditions were determined by measuring etch rates and selectivities for two types of superlattices. It was found that selectivity of GaSb over a superlattice is maximized if the reactive ion etching (RIE) chamber pressure is maximized and BCl3 is 80 % of the gas mixture. Selectivities of up to about 475 were measured. Greater selectivity was achieved with superlattices composed of thicker InAs layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. M. Walther, R. Rehm, F. Fuchs, J. Schmitz, J. Fleissner, W. Cabanski, D. Eich, M. Finck, W. Rode, J. Wendler, R. Wollrab, J. Ziegler, J. Electron. Mater. 34, 6 (2005)

    Article  Google Scholar 

  2. H.S. Kim, E. Plis, J.B. Rodriguez, G.D. Bishop, Y.D. Sharma, L.R. Dawson, S. Krishna, J. Bundas, R. Cook, D. Burrows, R. Dennis, K. Patnaude, A. Reisinger, M. Sundaram, Appl. Phys. Lett. 92, 183502 (2008)

    Article  ADS  Google Scholar 

  3. J.W. Little, S.P. Svensson, W.A. Beck, A.C. Goldberg, S.W. Kennerly, T. Hongsmatip, M. Winn, P. Uppal, J. Appl. Phys. 101, 044514 (2007)

    Article  ADS  Google Scholar 

  4. P.Y. Delaunay, B.M. Nguyen, D. Hoffman, M. Razeghi, Appl. Phys. Lett. 91, 231106 (2007)

    Article  ADS  Google Scholar 

  5. M. Walther, R. Rehm, J. Fleissner, J. Schmitz, Proc. SPIE 6542, 654206-1 (2007)

    Google Scholar 

  6. S.D. Gunapala, S.V. Bandara, J.K. Liu, J.M. Mumolo, C.J. Hill, E. Kurth, J. Woolaway, P.D. LeVan, M.Z. Tidrow, Proc. SPIE 6542, 65420W (2007)

    Article  ADS  Google Scholar 

  7. C.A. Wang, R.K. Huang, D.A. Shiau, M.K. Connors, P.G. Murphy, P.W. Obrien, A.C. Anderson, D.M. DePoy, G. Nichols, M.N. Palmisiano, Appl. Phys. Lett. 83, 1286 (2003)

    Article  ADS  Google Scholar 

  8. E. Plis, H.S. Kim, J.B. Rodriguez, G.D. Bishop, Y.D. Sharma, A. Khoshakhlagh, L.R. Dawson, J. Bundas, R. Cook, D. Burrows, R. Dennis, K. Patnaude, A. Reisinger, M. Sundaram, S. Krishna, Proc. SPIE 6940, 69400E (2008)

    Article  ADS  Google Scholar 

  9. C. Cervera, J.B. Rodriguez, J.P. Perez, H. Aït-Kaci, R. Chaghi, L. Konczewicz, S. Contreras, P. Christol, J. Appl. Phys. 106, 033709 (2009)

    Article  ADS  Google Scholar 

  10. P. Bhattacharya, Semiconductor Optoelectronic Devices, 2nd edn. (Pearson Education, Singapore, 1997), pp. 22–25

    Google Scholar 

  11. P.D. Moran, D. Chow, A. Hunter, T.F. Kuech, Appl. Phys. Lett. 78, 2232 (2001)

    Article  ADS  Google Scholar 

  12. D.A.B. Miller, D.S. Chemla, T.C. Dames, A.C. Gossard, W. Wiegmann, T.H. Wood, C.A. Burrus, Phys. Rev. B 32, 1043 (1985)

    Article  ADS  Google Scholar 

  13. T.H. Wood, E.C. Carr, C.A. Burrus, J.E. Henry, A.C. Gossard, J.H. English, Electron. Lett. 23, 17 (1987)

    Article  Google Scholar 

  14. E. Plis, A. Khoshakhlagh, S. Myers, H.S. Kim, N. Gautam, Y.D. Sharma, S. Krishna, S.J. Lee, S.K. Noh, J. Vac. Sci. Technol. B 28, 3 (2010)

    Article  Google Scholar 

  15. J.W. Lee, M.W. Devre, B.H. Reelfs, D. Johnson, J.N. Sasserath, F. Clayton, D. Hays, S.J. Pearton, J. Vac. Sci. Technol. A 18, 4 (2000)

    Google Scholar 

  16. S.J. Pearton, in Handbook of Compound Semiconductors, ed. by P.H. Holloway, G.E. McGuire (Noyes, Park, Ridge, 1995), p. 370

    Google Scholar 

Download references

Acknowledgements

The support from AFOSR Grants FA9550-10-1-0113, FA9550-09-1-0231 and the Global Research Laboratory program is gratefully acknowledged. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. Department of Energy, Office of Basic Energy Sciences user facility at Los Alamos National Laboratory (Contract DE-AC52-06NA25396) and Sandia National Laboratories (Contract DE-AC04-94AL85000). We also appreciate the use of facilities at the UNM Manufacturing Training and Technology Center (MTTC) and assistance from Harold Madsen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Krishna.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klein, B., Montoya, J., Gautam, N. et al. Selective InAs/GaSb strained layer superlattice etch stop layers for GaSb substrate removal. Appl. Phys. A 111, 671–674 (2013). https://doi.org/10.1007/s00339-012-7293-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-012-7293-8

Keywords

Navigation