Skip to main content
Log in

Coherent transmission of nodal Dirac fermions through a graphene-based superconducting double barrier junction

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Transport characteristics of relativistic electrons through graphene-based d-wave superconducting double barrier junction and ferromagnet/d-wave superconductor/normal metal double junction have been investigated based on the Dirac–Bogoliubov–de Gennes equation. We have first presented the results of superconducting double barrier junction. In the subgap regime, both the crossed Andreev and nonlocal tunneling conductance all oscillate with the bias voltage due to the formation of Andreev bound states in the normal metal region. Moreover, the critical voltage beyond which the crossed Andreev conductance becomes to zero decreases with increasing value of superconducting pair potential α. In the presence of the ferromagnetism, the MR through graphene-based ferromagnet/ d-wave superconductor/normal metal double junction has been investigated. It is shown that the MR increases from exchange splitting h 0=0 to h 0=E F (Fermi energy), and then it goes down. At h 0=E F, MR reaches its maximum 100. In contrast to the case of a single superconducting barrier, Andreev bound states also manifest itself in the zero bias MR, which result in a series of peaks except the maximum one at h 0=E F. Besides, the resonance peak of the MR can appear at certain bias voltage and structure parameter. Those phenomena mean that the coherent transmission can be tuned by superconducting pair potential, structure parameter, and external bias voltage, which benefits the spin-polarized electron device based on the graphene materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. P.R. Wallace, Phys. Rev. 71, 622 (1947)

    Article  ADS  MATH  Google Scholar 

  2. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 666 (2004)

    Article  ADS  Google Scholar 

  3. C.W.J. Beenakker, Rev. Mod. Phys. 80, 1337 (2008)

    Article  ADS  Google Scholar 

  4. A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, Rev. Mod. Phys. 81, 109 (2009)

    Article  ADS  Google Scholar 

  5. C. Bai, J. Wang, Y. Zhang, Y. Yang, Appl. Phys. A 103, 427 (2011)

    Article  ADS  Google Scholar 

  6. Y. He, W. Huang, Y. Yang, C. Li, Appl. Phys. A 106, 41 (2012)

    Article  ADS  Google Scholar 

  7. M. Salehi, G. Rashedi, Physica C 470, 703 (2010)

    Article  ADS  Google Scholar 

  8. F.M. Mojarabian, G. Rashedi, Physica E 44, 647 (2011)

    Article  ADS  Google Scholar 

  9. H.B. Heersche, P. Jarillo-Herrero, J.B. Oostinga, L.M.K. Vandersypen, A.F. Morpurgo, Nature 446, 56 (2007)

    Article  ADS  Google Scholar 

  10. X. Du, I. Skachko, E.Y. Andrei, Phys. Rev. B 77, 184507 (2008)

    Article  ADS  Google Scholar 

  11. F. Miao, S. Wijeratne, Y. Zhang, U.C. Coskun, W. Bao, C.N. Lau, Science 317, 1530 (2007)

    Article  ADS  Google Scholar 

  12. B. Uchoa, A.H. Castro Neto, Phys. Rev. Lett. 98, 146801 (2007)

    Article  ADS  Google Scholar 

  13. N.B. Kopnin, E.B. Sonin, Phys. Rev. Lett. 100, 246808 (2008)

    Article  ADS  Google Scholar 

  14. G. Profeta, M. Calandra, F. Mauri, Nat. Phys. 8, 131 (2012)

    Article  Google Scholar 

  15. J.L. McChesney, A. Bostwick, T. Ohta, T. Seyller, K. Horn, J. González, E. Rotenberg, Phys. Rev. Lett. 104, 136803 (2010)

    Article  ADS  Google Scholar 

  16. R. Nandkishore, L. Levitov, A. Chubukov, Nat. Phys. 8, 158 (2012)

    Article  Google Scholar 

  17. M. Kiesel, C. Platt, W. Hanke, D.A. Abanin, R. Thomale, arXiv:1109.2953

  18. M. Einenkel, K.B. Efetov, Phys. Rev. B 84, 214508 (2011)

    Article  ADS  Google Scholar 

  19. C.W.J. Beenakker, Phys. Rev. Lett. 97, 067007 (2006)

    Article  ADS  Google Scholar 

  20. S. Bhattacharjee, K. Sengupta, Phys. Rev. Lett. 97, 217001 (2006)

    Article  ADS  Google Scholar 

  21. M. Salehi, M. Alidoust, Y. Rahnavard, G. Rashedi, J. Appl. Phys. 107, 123916 (2010)

    Article  ADS  Google Scholar 

  22. M. Titov, C.W.J. Beenakker, Phys. Rev. B 74, R041401 (2006)

    Article  ADS  Google Scholar 

  23. D. Greenbaum, S. Das, G. Schwiete, P. Silvestrov, Phys. Rev. B 75, 195437 (2007)

    Article  ADS  Google Scholar 

  24. J. Cayssol, Phys. Rev. Lett. 100, 147001 (2008)

    Article  ADS  Google Scholar 

  25. C. Bai, Y. Yang, X. Zhang, J. Phys. Condens. Matter 20, 335202 (2008)

    Article  Google Scholar 

  26. A.G. Moghaddam, M. Zareyan, Appl. Phys. A 89, 579 (2007)

    Article  ADS  Google Scholar 

  27. A. Kundu, S. Rao, A. Saha, Phys. Rev. B 82, 155441 (2010)

    Article  ADS  Google Scholar 

  28. G. Rashedi, Yu.A. Kolesnichenko, Supercond. Sci. Technol. 18, 482 (2005)

    Article  ADS  Google Scholar 

  29. Y. Rahnavard, G. Rashedi, T. Yokoyama, J. Phys. Condens. Matter 22, 415701 (2010)

    Article  Google Scholar 

  30. Y. Rahnavard, G. Rashedi, T. Yokoyama, J. Phys. Condens. Matter 23, 275702 (2011)

    Article  ADS  Google Scholar 

  31. G. Rashedi, Y. Rahnavard, Y.A. Kolesnichenko, J. Low Temp. Phys. 36, 205 (2010)

    Article  Google Scholar 

  32. J. Linder, A. Sudbø, Phys. Rev. Lett. 99, 147001 (2007)

    Article  ADS  Google Scholar 

  33. M. Salehi, M. Alidoust, G. Rashedi, J. Appl. Phys. 108, 083917 (2010)

    Article  ADS  Google Scholar 

  34. J. Linder, A.M. Black-Schaffer, T. Yokoyama, S. Doniach, A. Sudbø, Phys. Rev. B 80, 094522 (2009)

    Article  ADS  Google Scholar 

  35. C. Bai, J. Wang, H. Tang, Y. Yang, Eur. Phys. J. B 84, 83 (2011)

    Article  ADS  Google Scholar 

  36. N. Tombros, C. Jozsa, M. Popinciue, H.T. Jonkman, B.J. Van Wees, Nature 448, 571 (2007)

    Article  ADS  Google Scholar 

  37. S. Cho, Y.F. Chen, M.S. Fuhrer, Appl. Phys. Lett. 91, 123105 (2007)

    Article  ADS  Google Scholar 

  38. Q. Zhang, D. Fu, B. Wang, R. Zhang, D.Y. Xing, Phys. Rev. Lett. 101, 047005 (2008)

    Article  ADS  Google Scholar 

  39. J. Linder, M. Zareyan, A. Sudbø, Phys. Rev. B 80, 014513 (2009)

    Article  ADS  Google Scholar 

  40. C. Bai, Y. Yang, X. Zhang, Appl. Phys. Lett. 92, 102513 (2008)

    Article  ADS  Google Scholar 

  41. M. Zareyan, H. Mohammadpour, A.G. Moghaddam, Phys. Rev. B 78, 193406 (2008)

    Article  ADS  Google Scholar 

  42. C. Benjamin, J.K. Pachos, Phys. Rev. B 78, 235403 (2008)

    Article  ADS  Google Scholar 

  43. Y. Tanaka, S. Kashiwaya, Phys. Rev. Lett. 74, 3451 (1995)

    Article  ADS  Google Scholar 

  44. G. Deutscher, Rev. Mod. Phys. 77, 109 (2005)

    Article  ADS  Google Scholar 

  45. C. Bai, J. Wang, Y. Yang, Phys. Lett. A 375, 1023 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11147201, 11147197, and 11047108) and the Key Project of Chinese Ministry of Education (Grant No. 211100). The project was also sponsored by the Education Department of Henan Province (Grant No. 2011B140001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunxu Bai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bai, C., Wei, KW., Yang, G. et al. Coherent transmission of nodal Dirac fermions through a graphene-based superconducting double barrier junction. Appl. Phys. A 111, 619–628 (2013). https://doi.org/10.1007/s00339-012-7275-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-012-7275-x

Keywords

Navigation