Skip to main content
Log in

Silver nanoplates: controlled preparation, self-assembly, and applications in surface-enhanced Raman scattering

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Silver nanoplates were prepared in a dual reduction system with NaBH4 and sodium citrate both as reducing agents. And then the as-prepared nanoplates could be growing up through multistage growth methodology. The average edge length of Ag nanoplates can be tailored from 40 nm to 260 nm without changing their shape, crystallinity, and the average thickness. Furthermore, the effectiveness of these silver nanoplates as substrates prepared by the silanization self-assembly method toward surface-enhanced Raman scattering (SERS) detection was evaluated by using 4-aminothiophenol (4-ATP) and rhodamine 6G (R6G) as probe molecules. It was found that the enhancement ability of the silver nanoplates film is remarkable lower than that of the spherical silver nanoparticle film. The reason is attributed to the electromagnetic mechanism and chemical mechanism. This work will be of great significance in understanding the SERS enhancement mechanism and in the fabrication of nanoparticle films for biosensing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. W.L. Barnes, A. Dereux, T.W. Ebbesen, Nature 424, 824 (2003)

    Article  ADS  Google Scholar 

  2. A. Khan, K. Rahman, M.T. Hyun, D.S. Kim, K.H. Choi, Appl. Phys. A, Mater. Sci. Process. 104, 1113 (2011)

    Article  ADS  Google Scholar 

  3. Y. Yin, P. Alivisatos, Nature 43, 7664 (2005)

    Google Scholar 

  4. E. González, J. Arbiol, V.F. Puntes, Science 334, 1377 (2011)

    Article  ADS  Google Scholar 

  5. W.C. Zhang, X.L. Wu, C.X. Kan, F.M. Pan, H.T. Chen, J. Zhu, P.K. Chu, Appl. Phys. A, Mater. Sci. Process. 100, 83 (2010)

    Article  ADS  Google Scholar 

  6. S. Shanmukh, L. Jones, J. Driskell, Y.P. Zhao, R. Dluhy, R.A. Tripp, Nano Lett. 6, 2630 (2006)

    Article  ADS  Google Scholar 

  7. Z. Yi, J.B. Zhang, Y. Chen, S.J. Chen, J.S. Luo, Y.J. Tang, W.D. Wu, Y.G. Yi, Trans. Nonferr. Met. Soc. China 21, 2049 (2011)

    Article  Google Scholar 

  8. Z. Yi, X.B. Li, X.B. Xu, B.C. Luo, J.S. Luo, W.D. Wu, Y.G. Yi, Y.J. Tang, Colloids Surf. A, Physicochem. Eng. Asp. 392, 131 (2011)

    Article  Google Scholar 

  9. J.F. Ho, B. Luk’yanchuk, J.B. Zhang, Appl. Phys. A, Mater. Sci. Process. 107, 133 (2012)

    Article  ADS  Google Scholar 

  10. B.L.V. Prasad, S.I. Stoeva, C.M. Sorensen, K.J. Klabunde, Langmuir 18, 7515 (2002)

    Article  Google Scholar 

  11. I. Pastoriza-Santos, L.M. Liz-Marzan, J. Mater. Chem. 18, 1724 (2008)

    Article  Google Scholar 

  12. H. Zhou, P. Heyer, H.J. Kim, J.H. Song, L.H. Piao, S.H. Kim, Chem. Mater. 23, 3622 (2011)

    Article  Google Scholar 

  13. Z.Y. Fang, L.R. Fan, C.F. Lin, D. Zhang, A.J. Meixner, X. Zhu, Nano Lett. 11, 1676 (2011)

    Article  ADS  Google Scholar 

  14. R. Jin, Y. Cao, G.S. Metraux, G.C. Schatz, C.A. Mirkin, Nature 425, 487 (2003)

    Article  ADS  Google Scholar 

  15. Y. Sun, Chem. Mater. 19, 5845 (2007)

    Article  Google Scholar 

  16. L.P. Jiang, S. Xu, J.M. Zhu, J.R. Zhang, J.J. Zhu, H.Y. Chen, Inorg. Chem. 43, 5877 (2004)

    Article  Google Scholar 

  17. Y. Sun, Y.N. Xia, Science 298, 2176 (2002)

    Article  ADS  Google Scholar 

  18. I. Washio, Y. Xiong, Y. Yin, Y. Xia, Adv. Mater. 18, 1745 (2006)

    Article  Google Scholar 

  19. A. Brioude, M.P. Pileni, J. Phys. Chem. B 109, 23371 (2005)

    Article  Google Scholar 

  20. J.H. Fendler, Chem. Mater. 13, 3196 (2001)

    Article  Google Scholar 

  21. C.R. Kagan, C.B. Murray, M. Nirmal, M.G. Bawendi, Phys. Rev. Lett. 76, 1517 (1996)

    Article  ADS  Google Scholar 

  22. M. Rycenga, C.M. Cobley, J. Zeng, W.Y. Li, C.H. Moran, Q. Zhang, D. Qin, Y.N. Xia, Chem. Rev. 111, 3669 (2011)

    Article  Google Scholar 

  23. X.Y. Zhang, A.M. Hu, T. Zhang, W. Lei, X.J. Xue, Y.H. Zhou, W.W. Duley, ACS Nano 11, 9082 (2011)

    Article  Google Scholar 

  24. X.Q. Zou, S.J. Dong, J. Phys. Chem. B 110, 21545 (2006)

    Article  Google Scholar 

  25. K. Aslan, J.R. Lakowicz, C.D. Geddes, J. Phys. Chem. B 109, 6247 (2005)

    Article  Google Scholar 

  26. O. Siiman, A. Burshteyn, J. Phys. Chem. B 104, 9795 (2000)

    Article  Google Scholar 

  27. T. Dadosh, Mater. Lett. 63, 2236 (2009)

    Article  Google Scholar 

  28. J.E. Millstone, S.J. Hurst, G.S. Metraux, J.I. Cutler, C.A. Mirkin, Small 5, 646 (2009)

    Article  Google Scholar 

  29. G.S. Metraux, C.A. Mirkin, Adv. Mater. 4, 412 (2005)

    Article  Google Scholar 

  30. C. Xue, C.A. Mirkin, Angew. Chem. 119, 2082 (2007)

    Article  Google Scholar 

  31. S.H. Chen, D.L. Carroll, J. Phys. Chem. B 18, 5500 (2004)

    Article  Google Scholar 

  32. X.C. Jiang, C.Y. Chen, W.M. Chen, Langmuir 6, 4400 (2010)

    Article  Google Scholar 

  33. Q. Zhang, Y.X. Hu, S.R. Guo, J. Goebl, Y.D. Yini, Nano Lett. 10, 5037 (2010)

    Article  ADS  Google Scholar 

  34. K. Aslan, Z. Leonenko, J.R. Lakowicz, C.D. Geddes, J. Phys. Chem. B 109, 3157 (2005)

    Article  Google Scholar 

  35. Z. Yi, J.B. Zhang, G. Niu, Y. Chen, J.S. Luo, W.D. Wu, Y.G. Yi, Y.J. Tang, J. Cent. South Univ. Technol. 19, 312 (2012)

    Article  Google Scholar 

  36. Z. Yi, X.B. Xu, X.B. Li, J.S. Luo, W.D. Wu, Y.J. Tang, Y.G. Yi, Appl. Surf. Sci. 258, 212 (2011)

    Article  ADS  Google Scholar 

  37. J.J. Mock, D.R. Smith, S. Schultz, Nano Lett. 3, 485 (2003)

    Article  ADS  Google Scholar 

  38. S.H. Ciou, Y.W. Cao, H.C. Huang, D.Y. Su, C.L. Huang, J. Phys. Chem. C 113, 9520 (2009)

    Article  Google Scholar 

  39. Y. Lu, G.L. Liu, L.P. Lee, Nano Lett. 1, 5 (2005)

    Article  ADS  Google Scholar 

  40. T. Wang, X.G. Hu, S.J. Dong, J. Phys. Chem. B 110, 16930 (2006)

    Article  Google Scholar 

  41. G.S. Hong, C. Li, L.M. Qi, Adv. Funct. Mater. 20, 3774 (2010)

    Article  Google Scholar 

  42. C.J. Orendorff, L. Gearheart, N.R. Jana, C.J. Murphy, Phys. Chem. Chem. Phys. 8, 165 (2006)

    Article  Google Scholar 

  43. M.F. Peng, J. Gao, P.P. Zhang, Y. Li, X.H. Sun, S.T. Lee, Chem. Mater. 23, 3296 (2011)

    Article  Google Scholar 

  44. J. Tang, F.S. Ou, H.P. Kuo, M. Hu, W.F. Stickle, Z.Y. Li, R.S. Williams, Appl. Phys. A, Mater. Sci. Process. 96, 793 (2009)

    Article  ADS  Google Scholar 

  45. W.Y. Li, P.H.C. Camargo, X.M. Lu, Y.N. Xia, Nano Lett. 9, 485 (2009)

    Article  ADS  Google Scholar 

  46. Y. Zhao, X.J. Zhang, J. Ye, L.M. Chen, S.P. Lau, W.J. Zhang, S.T. Lee, ACS Nano 5, 3027 (2011)

    Article  Google Scholar 

  47. Z.Q. Tian, B. Ren, D.Y. Wu, J. Phys. Chem. B 106, 9463 (2002)

    Article  Google Scholar 

  48. L.L. Sun, D.X. Zhao, M. Ding, Z.K. Xu, Z.Z. Zhang, B.H. Li, D.Z. Shen, J. Phys. Chem. C 115, 16295 (2011)

    Article  Google Scholar 

  49. A.M. Michaels, J. Jiang, L. Brus, J. Phys. Chem. B 104, 11965 (2000)

    Article  Google Scholar 

Download references

Acknowledgements

The work was supported by the State Key Development Program for Basic Research of China (Grant No. 9140C6805021008), the Science and Technology Development Foundation of Chinese Academy of Engineering Physics (Grant No. 2010B0401055), and the Open-End Fund for the Valuable and Precision Instruments of Central South University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yougen Yi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yi, Z., Xu, X., Wu, X. et al. Silver nanoplates: controlled preparation, self-assembly, and applications in surface-enhanced Raman scattering. Appl. Phys. A 110, 335–342 (2013). https://doi.org/10.1007/s00339-012-7256-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-012-7256-0

Keywords

Navigation