Skip to main content
Log in

Element analysis of complex materials by calibration-free laser-induced breakdown spectroscopy

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Laser-induced breakdown spectroscopy (LIBS) is a promising method for fast and quantitative element analysis of complex materials. We report on LIBS measurements of multi-component oxide materials and the compositional analysis of materials by a calibration-free (CF) method. This CF-LIBS method relies on modeling of the optical emission of laser-induced plasma assuming local thermodynamic equilibrium. Various materials are investigated and the calculated concentration values (C CF) of oxides CaO, Al2O3, MgO, SiO2, FeO, and MnO are in agreement with nominal concentration values (C N) from reference analysis. The relative error in oxide concentration e r=|C CFC N|/C N decreases with increasing concentration. The quantification is limited to major oxides (C N≥1 wt%). Slag samples from industrial steel production are analyzed on site by means of a mobile measurement system. LIBS measurements are performed at different sample temperatures. The results obtained show that CF-LIBS is applicable to fast compositional analysis of complex materials in harsh environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A.W. Miziolek, V. Palleschi, I. Schechter (eds.), Laser-Induced Breakdown Spectroscopy (LIBS), Fundamentals and Applications (Cambridge University Press, Cambridge, 2006)

    Google Scholar 

  2. D.A. Cremers, L.J. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy (Wiley, New York, 2006)

    Book  Google Scholar 

  3. J.P. Singh, S.N. Thakur (eds.), Laser Induced Breakdown Spectroscopy (Elsevier, Amsterdam, 2007)

    Google Scholar 

  4. R. Noll, Laser Induced Breakdown Spectroscopy, Fundamentals and Applications (Springer, Berlin, 2011)

    Google Scholar 

  5. R. Noll, V. Sturm, Ü. Aydin, D. Eilers, C. Gehlen, M. Höhne, A. Lamott, J. Makowe, J. Vrenegor, Spectrochim. Acta. Part B 63, 1159 (2008)

    Article  ADS  Google Scholar 

  6. L.M. Cabalín, A. González, J. Ruiz, J.J. Laserna, Spectrochim. Acta. Part B 65, 680 (2010)

    Article  ADS  Google Scholar 

  7. S. Laville, M. Sabsabi, F.R. Doucet, Spectrochim. Acta. Part B 62, 1557 (2007)

    Article  ADS  Google Scholar 

  8. A. Ciucci, M. Corsi, V. Palleschi, S. Rastelli, A. Salvetti, E. Tognoni, Appl. Spectrosc. 53, 960 (1999)

    Article  ADS  Google Scholar 

  9. E. Tognoni, G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, M. Mueller, U. Panne, I. Gornushkin, Spectrochim. Acta. Part B 62, 1287 (2007)

    Article  ADS  Google Scholar 

  10. V.S. Burakov, V.V. Kiris, P.A. Naumenkov, S.N. Raikov, J. Appl. Spectrosc. 71, 740 (2004)

    Article  ADS  Google Scholar 

  11. S.M. Pershin, F. Colao, V. Spizzichino, Laser Phys. 16, 455 (2006)

    Article  ADS  Google Scholar 

  12. J.A. Aguilera, C. Aragón, G. Cristoforetti, E. Tognoni, Spectrochim. Acta. Part B 64, 685 (2009)

    Article  ADS  Google Scholar 

  13. K.K. Herrera, E. Tognoni, I.B. Gornushkin, N. Omenetto, B.W. Smith, J.D. Winefordner, J. Anal. At. Spectrom. 24, 426 (2009)

    Article  Google Scholar 

  14. F. Colao, R. Fantoni, V. Lazic, A. Paolini, F. Fabbri, G.G. Ori, L. Marinangeli, A. Baliva, Planet. Space Sci. 52, 117 (2004)

    Article  ADS  Google Scholar 

  15. B. Sallé, J.L. Lacour, P. Mauchien, P. Fichet, S. Maurice, G. Manhes, Spectrochim. Acta. Part B 61, 301 (2006)

    Article  ADS  Google Scholar 

  16. A. De Giacomo, M. Dell’Aglio, O. De Pascale, S. Longo, M. Capitelli, Spectrochim. Acta. Part B 62, 1606 (2007)

    Article  ADS  Google Scholar 

  17. V.K. Singh, V. Singh, A.K. Rai, S.N. Thakur, P.K. Rai, J.P. Singh, Appl. Opt. 47, G38 (2008)

    Article  ADS  Google Scholar 

  18. S. Pandhija, A.K. Rai, Appl. Phys. B 94, 545 (2009)

    Article  ADS  Google Scholar 

  19. M. Kraushaar, R. Noll, H.-U. Schmitz, Appl. Spectrosc. 57, 1282 (2003)

    Article  ADS  Google Scholar 

  20. S. Rosenwasser, G. Asimellis, B. Bromley, R. Hazlett, J. Martin, A. Zigler, Spectrochim. Acta. Part B 56, 707 (2001)

    Article  ADS  Google Scholar 

  21. V. Motto-Ros, A.S. Koujelev, G.R. Osinski, A.E. Dudelzak, J. Eur. Opt. Soc., Rapid Publ. 3, 08011 (2008)

    Google Scholar 

  22. G. Doujak, R. Mertens, W. Ramb, J. Flock, J. Geyer, S. Lüngen, Stahl Eisen 121, 53 (2001)

    Google Scholar 

  23. B. Praher, V. Palleschi, R. Viskup, J. Heitz, J.D. Pedarnig, Spectrochim. Acta. Part B 65, 671 (2010)

    Article  ADS  Google Scholar 

  24. B. Praher, R. Rössler, E. Arenholz, J. Heitz, J.D. Pedarnig, Anal. Bioanal. Chem. 400, 3367 (2011)

    Article  Google Scholar 

  25. NIST atomic spectra database. http://physics.nist.gov/PhysRefData/ASD/

  26. KURUCZ atomic spectral line database http://www.pmp.uni-hannover.de/cgi-bin/ssi/test/kurucz/sekur.html

  27. M.A. Gigosos, M.A. Gonzalez, V. Cardenoso, Spectrochim. Acta. Part B 58, 1489 (2003).

    Article  ADS  Google Scholar 

  28. D. Bäuerle, Laser Processing and Chemistry, 4th edn. (Springer, Berlin, 2011)

    Book  Google Scholar 

  29. G. Nastasi, R. Wester, V. Colla, R. Noll, in Proc. 8th Int. Workshop Progress in Analytical Chemistry & Materials Characterisation in the Steel and Metals Industries (CETAS) (2011), pp. 423–426

    Google Scholar 

  30. M.W. Egger, A. Pissenberger, St.A. Aigner, in Proc. 8th Int. Workshop Progress Analytical Chemistry & Materials Characterisation in the Steel and Metals Industries (CETAS) (2011), pp. 89–94

    Google Scholar 

  31. P.J. Potts, M. Thompson, S. Wilson, Geostand. Newslett. 26, 197 (2002)

    Article  Google Scholar 

  32. I.B. Gornushkin, S.V. Shabanov, S. Merk, E. Tognoni, U. Panne, J. Anal. At. Spectrom. 25, 1643 (2010)

    Article  Google Scholar 

  33. T. Ctvrtníkova, L.M. Cabalín, J. Laserna, V. Kanický, Spectrochim. Acta. Part B 63, 42 (2008)

    Article  ADS  Google Scholar 

  34. L. St-Onge, M. Sabsabi, P. Cielo, Spectrochim. Acta. Part B 53, 407 (1998)

    Article  ADS  Google Scholar 

  35. V.I. Babushok, F.C. DeLucia Jr., J.L. Gottfried, C.A. Munson, A.W. Miziolek, Spectrochim. Acta. Part B 61, 999 (2006)

    Article  ADS  Google Scholar 

  36. R. Viskup, B. Praher, T. Linsmeyer, H. Scherndl, J.D. Pedarnig, J. Heitz, Spectrochim. Acta. Part B 65, 935 (2010)

    Article  ADS  Google Scholar 

  37. B.C. Windom, D.W. Hahn, J. Anal. At. Spectrom. 24, 1665 (2009)

    Article  Google Scholar 

  38. H. Heilbrunner, N. Huber, H. Wolfmeir, E. Arenholz, J.D. Pedarnig, J. Heitz, Appl. Phys. A 106, 15 (2012)

    Article  ADS  Google Scholar 

  39. L.I. Kexue, W. Zhou, Q. Shen, J. Shao, H. Qian, Spectrochim. Acta. Part B 65, 420 (2010).

    Article  ADS  Google Scholar 

  40. Y. Chen, Q. Zhang, G. Li, R. Li, J. Zhou, J. Anal. At. Spectrom. 25, 1969 (2010)

    Article  Google Scholar 

  41. W. Deng, Y. Liu, G. Wei, X. Li, X. Tu, L. Xie, H. Zhang, W. Sun, J. Anal. At. Spectrom. 25, 84 (2010)

    Article  Google Scholar 

  42. Q.Z. Bian, J. Koch, H. Lindner, H. Berndt, R. Hergenröder, K. Niemax, J. Anal. At. Spectrom. 20, 736 (2005)

    Article  Google Scholar 

  43. J.D. Pedarnig, J. Heitz, E.R. Ionita, G. Dinescu, B. Praher, R. Viskup, Appl. Surf. Sci. 257, 5452 (2011)

    Article  ADS  Google Scholar 

  44. Y. Ikeda, A. Moon, M. Kaneko, Appl. Opt. 49, C95 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

We want to thank the Austrian Federal Ministry of Economy, Family and Youth and the National Foundation for Research, Technology and Development for financial support (Christian Doppler Laboratory LAD). We thank the B & C Privatstiftung for the Houska Recognition Award 2011 presented to the Christian Doppler Laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. D. Pedarnig.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pedarnig, J.D., Kolmhofer, P., Huber, N. et al. Element analysis of complex materials by calibration-free laser-induced breakdown spectroscopy. Appl. Phys. A 112, 105–111 (2013). https://doi.org/10.1007/s00339-012-7208-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-012-7208-8

Keywords

Navigation