Skip to main content
Log in

Conical surface structures on model thin-film electrodes and tape-cast electrode materials for lithium-ion batteries

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Three-dimensional structures in cathode materials for lithium-ion batteries were investigated in this study. For this purpose, laser structuring of lithium cobalt oxide was investigated at first for a thin-film model system and in a second step for conventional tape-cast electrode materials.

The model thin-film cathodes with a thickness of 3 μm were deposited using RF magnetron sputtering on stainless steel substrates. The films were structured via excimer laser radiation with a wavelength of 248 nm. By adjusting the laser fluence, self-organized conical microstructures were formed. Using conventional electrodes, tape-cast cathodes made of LiCoO2 with a film thickness of about 80 μm on aluminum substrates were studied. It was shown that self-organizing surface structures could be formed by adjustment of the laser parameters. To investigate the formation mechanisms of the conical topography, the element composition was studied by time-of-flight secondary ion mass spectrometry and X-ray photoelectron spectroscopy. Electrochemical cycling using a lithium anode and conventional electrolyte was applied to study the influence of the laser processing procedures on cell performance. For the model electrode system, a significantly higher discharge capacity of 80 mAh/g could be obtained after 110 cycles by laser structuring compared to 8 mAh/g of the unstructured thin film. On conventional tape-cast electrodes self-organized surface structures could also increase the cycling stability resulting in an 80 % increase in capacity after 110 cycles in comparison to the unstructured electrode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. J.B. Goodenough, Y. Kim, Chem. Mater. 22, 587–603 (2010)

    Article  Google Scholar 

  2. B. Scrosati, J. Garche, J. Power Sources 195, 2419–2430 (2010)

    Article  Google Scholar 

  3. J.W. Long, B. Dunn, D.R. Rolison, H.S. White, Chem. Rev. 104, 4463–4492 (2004)

    Article  Google Scholar 

  4. C.L. Wang, L. Taherabadi, G.Y. Jia, M. Madou, Y.T. Yeh, B. Dunn, Electrochem. Solid-State Lett. 7, A435–A438 (2004)

    Article  Google Scholar 

  5. B. Dunn, C.J. Kim, S. Tolbert, in Proc. IEEE MEMS, ed. by M. Wong, Y. Suzuki (IEEE, New York, 2010), pp. 164–167

    Google Scholar 

  6. W.C. West, J.F. Whitacre, V. White, B.V. Ratnakumar, J. Micromech. Microeng. 12, 58–62 (2002)

    Article  ADS  Google Scholar 

  7. A.V. Jeyaseelan, J.F. Rohan, Appl. Surf. Sci. 256, S61–S64 (2009)

    Article  ADS  Google Scholar 

  8. P.H.L. Notten, F. Roozeboom, R.A.H. Niessen, L. Baggetto, Adv. Mater. 19, 4564–4567 (2007)

    Article  Google Scholar 

  9. R. Kohler, J. Proell, S. Ulrich, V. Trouillet, S. Indris, M. Przybylski, W. Pfleging, Proc. SPIE 7202, 1–11 (2009)

    Google Scholar 

  10. J. Proell, R. Kohler, M. Torge, S. Ulrich, C. Ziebert, M. Bruns, H.J. Seifert, W. Pfleging, Appl. Surf. Sci. 257, 9968–9976 (2011)

    Article  ADS  Google Scholar 

  11. R. Kohler, H. Besser, M. Hagen, J. Ye, C. Ziebert, S. Ulrich, J. Proell, W. Pfleging, Microsyst. Technol. 17, 225–232 (2011)

    Article  Google Scholar 

  12. K.W. Kolasinski, Curr. Opin. Solid State Mater. Sci. 11, 76–85 (2007)

    Article  ADS  Google Scholar 

  13. J.E. Sipe, J.F. Young, J.S. Preston, H.M. Vandriel, Phys. Rev. B 27, 1141–1154 (1983)

    Article  ADS  Google Scholar 

  14. R. Zakaria, P.E. Dyer, Appl. Phys. A, Mater. Sci. Process. 101, 13–18 (2010)

    Article  ADS  Google Scholar 

  15. S.I. Dolgaev, S.V. Lavrishev, A.A. Lyalin, A. Simakin, V.V. Voronov, G.A. Shafeev, Appl. Phys. A, Mater. Sci. Process. 73, 177–181 (2001)

    Article  ADS  Google Scholar 

  16. A.J. Pedraza, J.D. Fowlkes, D.H. Lowndes, Appl. Phys. A, Mater. Sci. Process. 69, S731–S734 (1999)

    Article  ADS  Google Scholar 

  17. H. Pazokian, S. Jelvani, J. Barzin, M. Mollabashi, S. Abolhosseini, Opt. Commun. 284, 363–367 (2011)

    Article  ADS  Google Scholar 

  18. W. Pfleging, R. Kohler, M. Torge, V. Trouillet, F. Danneil, M. Stuber, Appl. Surf. Sci. 257, 7907–7912 (2011)

    Article  ADS  Google Scholar 

  19. B. Hopp, Z. Bor, E. Homolya, E. Mihalik, Appl. Surf. Sci. 110, 232–235 (1997)

    Article  Google Scholar 

  20. V. Oliveira, R. Vilar, Appl. Phys. A, Mater. Sci. Process. 92, 957–961 (2008)

    Article  ADS  Google Scholar 

  21. R. Kohler, M. Bruns, P. Smyrek, S. Ulrich, M. Przybylski, W. Pfleging, Proc. SPIE 7585, 1–11 (2010)

    Google Scholar 

  22. R. Kohler, P. Smyrek, S. Ulrich, M. Bruns, V. Trouillet, W. Pfleging, J. Optoelectron. Adv. Mater. 12, 547–552 (2010)

    Google Scholar 

  23. N. Pereira, C. Matthias, K. Bell, F. Badway, I. Plitz, J. Al-Sharab, F. Cosandey, P. Shah, N. Isaacs, G.G. Amatucci, J. Electrochem. Soc. 152, A114–A125 (2005)

    Article  Google Scholar 

  24. S. Tanaka, M. Taniguchi, H. Tanigawa, J. Nucl. Mater. 283, 1405–1408 (2000)

    Article  ADS  Google Scholar 

  25. S.C. Petitto, E.M. Marsh, G.A. Carson, M.A. Langell, J. Mol. Catal. A, Chem. 281, 49–58 (2008)

    Article  Google Scholar 

  26. S. Shiraishi, K. Kanamura, Z. Takehara, J. Appl. Electrochem. 25, 584–591 (1995)

    Article  Google Scholar 

  27. J.L. Li, C. Daniel, D. Wood, J. Power Sources 196, 2452–2460 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support by the Federal Ministry for Education and Research (BMBF) in the BMBF-project 03SF0344A “Li-ion battery cells based on novel nanocomposite materials” (LIB-NANO) in the framework of “Lithium-Ion Battery LIB-2015”. Finally, the support by the Karlsruhe Nano Micro Facility (KNMF, www.kit.edu/knmf) for laser processing is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Kohler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kohler, R., Proell, J., Bruns, M. et al. Conical surface structures on model thin-film electrodes and tape-cast electrode materials for lithium-ion batteries. Appl. Phys. A 112, 77–85 (2013). https://doi.org/10.1007/s00339-012-7205-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-012-7205-y

Keywords

Navigation