Skip to main content
Log in

Optimization of pulsed laser deposited ZnO thin-film growth parameters for thin-film transistors (TFT) application

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this work we present the optimization of zinc oxide (ZnO) film properties for a thin-film transistor (TFT) application. Thin films, 50±10 nm, of ZnO were deposited by Pulsed Laser Deposition (PLD) under a variety of growth conditions. The oxygen pressure, laser fluence, substrate temperature and annealing conditions were varied as a part of this study. Mobility and carrier concentration were the focus of the optimization. While room-temperature ZnO growths followed by air and oxygen annealing showed improvement in the (002) phase formation with a carrier concentration in the order of 1017–1018/cm3 with low mobility in the range of 0.01–0.1 cm2/V s, a Hall mobility of 8 cm2/V s and a carrier concentration of 5×1014/cm3 have been achieved on a relatively low temperature growth (250 °C) of ZnO. The low carrier concentration indicates that the number of defects have been reduced by a magnitude of nearly a 1000 as compared to the room-temperature annealed growths. Also, it was very clearly seen that for the (002) oriented films of ZnO a high mobility film is achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. B. Bayraktaroglu, K. Leedy, R. Neidhard, IEEE Electron Device Lett. 29(9), 1024 (2008)

    Article  ADS  Google Scholar 

  2. A. Bashir, P.H. Wobkenberg, J. Smith, J.M. Ball, G. Adamopoulos, D.D.C. Bradley, T.D. Anthopoulos, Adv. Mater. 21, 2226 (2009)

    Article  Google Scholar 

  3. J.F. Wager, Science 300(5623), 1245 (2003)

    Article  Google Scholar 

  4. S. Choopun, R.D. Vispute, W. Noch, A. Balsamo, R.P. Sharma, T. Venkatesan, A. Iliadis, D.C. Look, Appl. Phys. Lett. 75, 3947 (1999)

    Article  ADS  Google Scholar 

  5. E.M. Kaidashev, M. Lorenz, H. von Wenckstern, A. Rahm, H.-C. Semmelhack, K.-H. Han, G. Benndorf, C. Bundesmann, H. Hochmuth, M. Grundmann, Appl. Phys. Lett. 82, 3901 (2003)

    Article  ADS  Google Scholar 

  6. Ü. Özgür, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, H. Morkoç, J. Appl. Phys. 98, 041301 (2005)

    Article  ADS  Google Scholar 

  7. C. Klingshirn, Phys. Status Solidi (b) 244, 3027–3073 (2007)

    Article  ADS  Google Scholar 

  8. S.L. King, J.G.E. Gardeniers, I.W. Boyd, Appl. Surf. Sci. 96–98, 81l (1996)

    Google Scholar 

  9. A.Og. Dikovska, P.A. Atanasov, C. Vasileva, I.G. Dimitrov, T.R. Stoyanchov, J. Optoelectron. Adv. Mater. 7, 1329 (2003)

    Google Scholar 

  10. M. Gupta, F.R. Chowdhury, V. Sauer, S.S. Yap, T.W. Reenaas, Y.Y. Tsui, Proc. SPIE 8007, 80070J (2011)

    Article  ADS  Google Scholar 

  11. M.W. Allen, M.M. Alkaisi, S.M. Durbin, Appl. Phys. Lett. 89, 103520 (2006)

    Article  ADS  Google Scholar 

  12. M.W. Allen, S.M. Durbin, Appl. Phys. Lett. 91, 053512 (2007)

    Article  ADS  Google Scholar 

  13. R. Yogamalar, R. Srinivasan, A. Vinu, K. Ariga, A.C. Bose, Solid State Commun. 149, 1919 (2009)

    Article  ADS  Google Scholar 

  14. J.B. Franklin, B. Zou, P. Petrov, D.W. McComb, M.P. Ryan, M.A. McLachlan, J. Mater. Chem. 21, 8178 (2011)

    Article  Google Scholar 

  15. A.M. Ma, M. Gupta, F.R. Chowdhury, M. Shen, K. Bothe, K. Shankar, Y. Tsui, D.W. Barlage, Solid State Electron. 76, 104 (2012)

    Article  ADS  Google Scholar 

  16. Y.W. Heo, D.P. Norton, S.J. Pearton, J. Appl. Phys. 98, 073502 (2005)

    Article  ADS  Google Scholar 

  17. J. Liu, Y. Zhao, Y.J. Jiang, C.M. Lee, Y.L. Liu, G.G. Siu, Appl. Phys. Lett. 97, 231907 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the Natural Sciences and Engineering Research Council (NSERC) of Canada and the Canadian Institute for Photonic Innovations (CIPI) and Nanobridge. Fabrication was completed at the University of Alberta Nanofab. XRD and SEM characterization tools were provided by Integrated Nanosystems Research Facility (INRF) and Alberta Centre for Surface Engineering and Science (ACSES) both are at the University of Alberta.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manisha Gupta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gupta, M., Chowdhury, F.R., Barlage, D. et al. Optimization of pulsed laser deposited ZnO thin-film growth parameters for thin-film transistors (TFT) application. Appl. Phys. A 110, 793–798 (2013). https://doi.org/10.1007/s00339-012-7154-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-012-7154-5

Keywords

Navigation