Skip to main content
Log in

Completely random nanoporous Cu4O3–CuO–C composite thin films for potential application as multiple channel photonic band gap based filter in the telecommunication wavelengths

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In 2003, Babin et al. theoretically predicted (J. Appl. Phys. 94:4244, 2003) that fabrication of organic–inorganic hybrid materials would probably be required to implement structures with multiple photonic band gaps. In tune with their prediction, we report synthesis of such an inorganic–organic nanocomposite, comprising Cu4O3–CuO–C thin films that experimentally exhibit the highest (of any known material) number (as many as eleven) of photonic band gaps in the near infrared. On contrary to the report by Wang et al. (Appl. Phys. Lett. 84:1629, 2004) that photonic crystals with multiple stop gaps require highly correlated structural arrangement such as multilayers of variable thicknesses, we demonstrate experimental realization of multiple stop gaps in completely randomized structures comprising inorganic oxide nanocrystals (Cu4O3 and CuO) randomly embedded in a randomly porous carbonaceous matrix. We report one step synthesis of such nanostructured films through the metalorganic chemical vapor deposition technique using a single source metalorganic precursor, Cu4(deaH)(dea)(oAc)5 ⋅ (CH3)2CO. The films displaying multiple (4/9/11) photonic band gaps with equal transmission losses in the infrared are promising materials to find applications as multiple channel photonic band gap based filter for WDM technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. V. Babin, P. Garstecki, R. Holyst, J. Appl. Phys. 94, 4244–4247 (2003)

    Article  ADS  Google Scholar 

  2. Z. Wang, L. Wang, Y. Wu, L. Chen, X. Chen, W. Lu, Appl. Phys. Lett. 84, 1629–1631 (2004)

    Article  ADS  Google Scholar 

  3. R. Roy, R.A. Roy, D.M. Roy, Mater. Lett. 4, 323 (1986)

    Article  Google Scholar 

  4. T. Sekino, T. Nakajima, K. Niihara, Mater. Lett. 29, 165 (1996)

    Article  Google Scholar 

  5. M. Sternitzke, J. Eur. Ceram. Soc. 17, 1061 (1997)

    Article  Google Scholar 

  6. R. Riedel, H.-J. Kleebe, H. Schonfelder, F. Aldinger, Nature 374, 526 (1995)

    Article  ADS  Google Scholar 

  7. K. Niihara, J. Ceram. Soc. Jpn. 99, 974 (1991)

    Article  Google Scholar 

  8. D.N. Lambeth, E.M.T. Velu, G.H. Bellesis, L.L. Lee, D.E. Laughlin, J. Appl. Phys. 79, 4496 (1996)

    Article  ADS  Google Scholar 

  9. A. Meldrum, L.A. Boatner, C.W. White, Nucl. Instrum. Methods Phys. Res., Sect. B, Beam Interact. Mater. Atoms 178, 7 (2001)

    Article  ADS  Google Scholar 

  10. S. Özkar, G.A. Ozin, R.A. Prokopowics, Chem. Mater. 4, 1380 (1992)

    Article  Google Scholar 

  11. C. Sanchez, G.J.A.A. de Soler-Illia, F. Ribbot, T. Lalot, C.R. Mayer, V. Cabuil, Chem. Mater. 13, 3061 (2001)

    Article  Google Scholar 

  12. S.A. Davis, M. Breulmann, K.H. Rhodes, B. Zhang, S. Mann, Chem. Mater. 13, 3218 (2001)

    Article  Google Scholar 

  13. L.A. Estroff, A.D. Hamilton, Chem. Mater. 13, 3227 (2001)

    Article  Google Scholar 

  14. T. Asefa, C.Y. Ishii, M.J. MacLachlan, G.A. Ozin, J. Mater. Chem. 10, 1751 (2000)

    Article  Google Scholar 

  15. K. Matsui, B.K. Pradhan, T. Kyotani, A. Tomita, J. Phys. Chem. B 105, 5682 (2001)

    Article  Google Scholar 

  16. T. Goto, T. Ono, T. Hirai, Scr. Mater. 44, 1187 (2001)

    Article  Google Scholar 

  17. W.L. Vos, H.M. van Diel, Phys. Lett. A 272, 101–106 (2001)

    Article  ADS  Google Scholar 

  18. F. Qiao, C. Zhang, J. Wan, J. Zi, Appl. Phys. Lett. 77, 3698–3700 (2000)

    Article  ADS  Google Scholar 

  19. S.H. Chang, H. Cao, IEEE J. Quantum Electron. 39, 364–374 (2003)

    Article  ADS  Google Scholar 

  20. M. Das, S.A. Shivashankar, Mater. Res. Soc. Symp. Proc. 964, 0964-R03-20 (2007)

    Article  Google Scholar 

  21. O’Keefe, J.O. Bovin, Am. Mineral. 63, 180 (1978)

    Google Scholar 

  22. M.B. Sahana, S.A. Shivashankar, J. Mater. Res. 19, 2859–2870 (2004)

    Article  ADS  Google Scholar 

  23. N.S. McIntyre, M.G. Cook, Anal. Chem. 47, 2208 (1975)

    Article  Google Scholar 

  24. J. Haber, T. Machej, L. Ungier, J. Ziolkowski, J. Solid State Chem. 25, 207 (1978)

    Article  ADS  Google Scholar 

  25. J.G. Jolley, G.G. Geesey, M.R. Haukins, R.B. Write, P.L. Wichlacz, Appl. Surf. Sci. 37, 469 (1989)

    Article  ADS  Google Scholar 

  26. S. Jin, A. Atrens, Appl. Phys. A, Mater. Sci. Process. 42, 149–166 (1987)

    Article  ADS  Google Scholar 

  27. S.D. Gardner, C.S.K. Singamsetty, G.L. Booth, G.-R. He, C.U. Pittman, Jr. Carbon 33, 587 (1995)

    Article  Google Scholar 

  28. S. Tougaard, Appl. Surf. Sci. 100, 1–10 (1996)

    Article  ADS  Google Scholar 

  29. J.E. Sipe, R.W. Boyd, V.M. Shalaev (ed.), Optical properties of nanostructured random media. Top. Appl. Phys. 82, 1–19 (2002)

    Article  ADS  Google Scholar 

  30. L.M. Li, Z.Q. Zhang, Phys. Rev. B 58, 9587–9590 (1998)

    Article  ADS  Google Scholar 

  31. M. Das, S.A. Shivashankar, Appl. Organomet. Chem. 21, 15–25 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

M.D. thanks Mr. Umesh Tiwari and Mr. Haribhaskar of PANalytical for technical help with GIXRD measurements, and Mr. Amit Mandal (Institute NanoScience Initiative ) for technical help with HRTEM measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahua Das.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

(DOC 2.0 MB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Das, M., Bittencourt, C., Pireaux, J.J. et al. Completely random nanoporous Cu4O3–CuO–C composite thin films for potential application as multiple channel photonic band gap based filter in the telecommunication wavelengths. Appl. Phys. A 109, 245–254 (2012). https://doi.org/10.1007/s00339-012-7057-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-012-7057-5

Keywords

Navigation