Skip to main content
Log in

Design, fabrication, and characterization of lightweight and broadband microwave absorbing structure reinforced by two dimensional composite lattice

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Microwave absorbing structures (MASs) reinforced by two dimensional (2D) composite lattice elements have been designed and fabricated. The density of these MASs is lower than 0.5 g/cm3. Experimental measurements show that the sandwich structure with glass fiber reinforced composite (GFRC) lattice core can serve as a broadband MAS with its reflectivity below −10 dB over the frequency range of 4–18 GHz. The low permittivity GFRC is indicated to be the proper material for both the structural element of the core and the transparent face sheet. Calculations by the periodic moment method (PMM) demonstrate that the 2D Kagome lattice performs better for microwave absorbing than the square one at relatively low frequencies. The volume fraction and cell size of the structural element are also revealed to be key factors for microwave absorbing performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. K.J. Vinoy, R.M. Jha, Radar Absorbing Materials: From Theory to Design and Characterization (Kluwer Academic, Boston, 1996)

    Book  Google Scholar 

  2. J.R. Liu, M. Itoh, T. Horikawa, M. Itakura, N. Kuwano, K. Machida, J. Phys. D, Appl. Phys. 37, 2737 (2004)

    Article  ADS  Google Scholar 

  3. C. Xiang, Y. Pan, X. Liu, X. Sun, X. Shi, J. Guo, Appl. Phys. Lett. 87, 123103 (2005)

    Article  ADS  Google Scholar 

  4. J.R. Liu, M. Itoh, T. Horikawa, E. Taguchi, H. Mori, K. Machida, Appl. Phys. A 82, 509 (2006)

    Article  ADS  Google Scholar 

  5. C.C. Lee, D.H. Chen, Appl. Phys. Lett. 90, 193102 (2007)

    Article  ADS  Google Scholar 

  6. Y. Duan, Y. Yang, M. He, S. Liu, X. Cui, H. Chen, J. Phys. D, Appl. Phys. 41, 125403 (2008)

    Article  ADS  Google Scholar 

  7. B. Gao, L. Qiao, J. Wang, Q. Liu, F. Li, J. Feng, D. Xue, J. Phys. D, Appl. Phys. 41, 235005 (2008)

    Article  ADS  Google Scholar 

  8. R.T. Lv, F.Y. Kang, J.L. Gu, X.C. Gui, J.Q. Wei, K.L. Wang, D.H. Wu, Appl. Phys. Lett. 93, 223105 (2008)

    Article  ADS  Google Scholar 

  9. E. Muhammad Abdul Jamal, P. Mohanan, P.A. Joy, P. Kurian, M.R. Anantharaman, Appl. Phys. A 97, 157 (2009)

    Article  ADS  Google Scholar 

  10. K.Y. Park, J.H. Han, S.B. Lee, J.B. Kim, J.W. Yi, S.K. Lee, Compos. Sci. Technol. 69, 1271 (2009)

    Article  Google Scholar 

  11. I.M.D. Rosa, A. Dinescu, F. Sarasini, M.S. Sarto, A. Tamburrano, Compos. Sci. Technol. 70, 102 (2010)

    Article  Google Scholar 

  12. Y.C. Qing, W.C. Zhou, S. Jia, F. Luo, D.M. Zhu, Appl. Phys. A 100, 1177 (2010)

    Article  ADS  Google Scholar 

  13. Y.B. Chen, Z.M. Zhang. J. Phys. D, Appl. Phys. 41, 095406 (2008)

    Article  ADS  Google Scholar 

  14. M.J. Lockyear, A.P. Hibbins, J.R. Sambles, P.A. Hobson, C.R. Lawrence, Appl. Phys. Lett. 94, 041913 (2009)

    Article  ADS  Google Scholar 

  15. N.I. Landy, S. Sajuyigbe, J.J. Mock, D.R. Smith, W.J. Padilla, Phys. Rev. Lett. 100, 207402 (2008)

    Article  ADS  Google Scholar 

  16. Y. Cheng, H. Yang, Z. Cheng, N. Wu, Appl. Phys. A 102, 99 (2011)

    Article  ADS  Google Scholar 

  17. J.H. Oh, K.S. Oh, C.G. Kim, C.S. Hong, Composites, Part B 35, 49 (2004)

    Article  Google Scholar 

  18. S.E. Lee, J.H. Kang, C.G. Kim, Compos. Struct. 76, 397 (2006)

    Article  Google Scholar 

  19. J. Yang, Z. Shen, Z. Hao, Carbon 42, 1882 (2004)

    Article  Google Scholar 

  20. K.Y. Park, S.E. Lee, C.G. Kim, J.H. Han, Compos. Sci. Technol. 66, 576 (2006)

    Article  Google Scholar 

  21. A.G. Evans, J.W. Hutchinson, N.A. Fleck, M.F. Ashby, H.N.G. Wadley, Prog. Mater. Sci. 46, 309 (2001)

    Article  Google Scholar 

  22. H.L. Fan, W. Yang, Z.M. Chao. Compos. Sci. Technol. 67, 3472 (2007)

    Article  Google Scholar 

  23. M. Chen, Y. Pei, D. Fang, Comput. Mater. Sci. 46, 591 (2009)

    Article  Google Scholar 

  24. F. Harrington, Field Computation by Moment Methods (IEEE Press, New York, 1968)

    Google Scholar 

  25. J.J.H. Wang, Generalized Moment Methods in Electromagnetics (Wiley, New York, 1991)

    Google Scholar 

  26. C.F. Yang, W.D. Burnside, R.C. Rudduck, IEEE Trans. Antennas Propag. 41, 600 (1993)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the support by National Natural Science Foundation of China under grants #90816025, #10632060, and #10640150395. Supports by the National Basic Research Program of China (#G2011CB610303, 2010CB832701) and Fund of State Key Laboratory of Explosion Science and Technology (KFJJ08-15) are also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daining Fang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, M., Pei, Y. & Fang, D. Design, fabrication, and characterization of lightweight and broadband microwave absorbing structure reinforced by two dimensional composite lattice. Appl. Phys. A 108, 75–80 (2012). https://doi.org/10.1007/s00339-012-7002-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-012-7002-7

Keywords

Navigation