Skip to main content
Log in

Iron based carbon nanocomposites for electromagnetic wave absorber with wide bandwidth in GHz range

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The electromagnetic wave absorption properties of resin compacts containing 40 vol. % composite powders of α-Fe/C(a), and Fe3C/C(a) were characterized in a frequency range of 0.05–26.5 GHz, according to a conventional reflection/transmission technique. The real part (εr ) and the imaginary part (εr ′′) of relative permittivity were constantly low in the 2–14 GHz (εr = ∼12.4 and εr ′′= ∼0.6) for α-Fe/C(a) resin composites, and in the 1–26.5 GHz (εr = ∼9.6 and εr ′′= ∼0.8) for Fe3C/C(a) ones. The imaginary part (μr ′′) of relative permeability exhibited wide peaks in the 1–9 GHz range for α-Fe/C(a), and in the 2–26.5 GHz range for Fe3C/C(a) owing to their different magnetocrystalline anisotropy field values. Consequently, the resin compacts with 40 vol. % α-Fe/C(a), and Fe3C/C(a) powders provided good electromagnetic wave absorption performances (reflection loss <-20 dB) in ranges of 4.3–8.2 GHz, and 9–26.5 GHz over absorber thicknesses of 1.8–3.3 mm, and 1.0–2.4 mm, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Matsumoto M, Miyata Y (1997) IEEE Trans. Magn. 33:523

    Google Scholar 

  2. Olmedo L, Chateau G, Deleuze C, Forveille JL (1993) J. Appl. Phys. 73:6992

    Article  ADS  Google Scholar 

  3. Viau G, Ravel F, Acher O, Fievet-Vincent F, Fievet F (1994) J. Appl. Phys. 76:6570

    Article  ADS  Google Scholar 

  4. Snoek JL (1948) Physica (Amsterdam) 14:207

    Article  ADS  Google Scholar 

  5. Rousselle D, Berthault A, Acher O, Bouchaud JP, Zerah PG (1993) J. Appl. Phys. 74:475

    Article  ADS  Google Scholar 

  6. Sugimoto S, Maeda T, Book D, Kagotani T, Inomata K, Homma M, Ota H, Houjou Y, Sato R (2002) J. Alloys Compd. 330–332:301

    Article  Google Scholar 

  7. Deng LW, Jiang JJ, Fan SC, Feng ZK, Xie WY, Zhang XC, He HH (2003) J. Magn. Magn. Mater. 264:50

    Article  ADS  Google Scholar 

  8. Rochman NT, Kawamoto K, Sueyoshi H, Nakamura Y, Nishida T (1999) J. Mater. Process. Tech. 89:367

    Article  Google Scholar 

  9. Harada T, Kuji T (1996) J. Alloys Compd. 232:238

    Article  Google Scholar 

  10. Maeda T, Sugimoto S, Kagotani T, Book D, Homma M, Ota H, Houjou Y (2000) Mater. Trans. 41:1172

    Article  Google Scholar 

  11. Liu JR, Itoh M, Machida K (2003) Chem. Lett. 32:394

    Article  Google Scholar 

  12. Liu JR, Itoh M, Machida K (2003) Appl. Phys. Lett. 83:4017

    Article  ADS  Google Scholar 

  13. Liu JR, Itoh M, Machida K (2004) Electrochem. Solid-State Lett. 7:J9

    Article  Google Scholar 

  14. Li L, Tang J (1994) J. Alloys Compd. 209:L1

    Article  ADS  Google Scholar 

  15. Mochidzuki K, Soutric F, Tadokoro K, Antal MJ, Toth M, Zelei B, Varhegyi G (2003) Ind. Eng. Chem. Res. 42:5140

    Article  Google Scholar 

  16. Sagawa M, Fujimura S, Togawa N, Yamamoto H, Matuura Y (1984) J. Appl. Phys. 55:2083

    Article  ADS  Google Scholar 

  17. Musal HM Jr, Hahn HT (1989) IEEE Trans. Magn. 25:3851

    Article  ADS  Google Scholar 

  18. Kim SS, Jo SB, Gueon KI, Choi KK, Kim JM, Churn KS (1991) IEEE Trans. Magn. 27:5462

    Article  ADS  Google Scholar 

  19. Michielssen E, Sajer J, Ranjithan S, Mittra R (1993) IEEE Trans. Micro. Theo. Technol. 41:1024

    Article  ADS  Google Scholar 

  20. Kwon HJ, Shin JY, Oh JH (1994) J. Appl. Phys. 75:6109

    Article  ADS  Google Scholar 

  21. Singh P, Babbar VK, Razdan A, Puri RK, Goel TC (2000) J. Appl. Phys. 87:4362

    Article  ADS  Google Scholar 

  22. Cho SB, Kang DH, Oh JH (1996) J. Mater. Sci. 31:4719

    Article  ADS  Google Scholar 

  23. Chikazumi S (1997) Physics of Ferromagnetism. Clarendon Press, Oxford

    Google Scholar 

  24. Zhang GL, Yu S (1996) Phys. Lett. A 222:203

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Machida.

Additional information

PACS

76.50.+g; 61.46.+w; 75.50.Bb; 75.30.Gw; 75.20.En

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, J., Itoh, M., Horikawa, T. et al. Iron based carbon nanocomposites for electromagnetic wave absorber with wide bandwidth in GHz range. Appl. Phys. A 82, 509–513 (2006). https://doi.org/10.1007/s00339-005-3417-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-005-3417-8

Keywords

Navigation