Skip to main content

Advertisement

Log in

Reversible creation of nanostructures between identical or different species of materials

  • Rapid communication
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this study, accurate nanostructures with various aspect ratios are created on several types of material. This work is highly applicable to the energy, optical, and nano-bio fields, for example. A silicon (Si) nano-mold is preserved using the method described, and target nanostructures are replicated reversibly and unlimitedly to or from various hard and soft materials. It is also verified that various materials can be applied to the substrates. The results confirm that the target nanostructures are successfully created in precise straight line structures and circle structures with various aspect ratios, including extremely high aspect ratios of 1:18. It is suggested that the optimal replicating and demolding process of nanostructures with high aspect ratios, which are the most problematic, could be controlled by means of the surface energy between the functional materials. Relevant numerical and analytical studies are also performed. It is possible to expand the applicability of the nanostructured mold by adopting various backing materials, including rounded substrates. The scope of the applications is extended further by transferring the nanostructures between different species of materials including metallic materials as well as identical species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. E. Kim, Y.N. Xia, G.M. Whitesides, Nature 376, 581 (1995)

    Article  ADS  Google Scholar 

  2. X.M. Zhao, Y.N. Xia, G.M. Whitesides, J. Mater. Chem. 7, 1069 (1997)

    Article  Google Scholar 

  3. Y.N. Xia, G.M. Whitesides, Annu. Rev. Mater. Sci. 28, 153 (1998)

    Article  ADS  Google Scholar 

  4. Y.N. Xia, G.M. Whitesides, Angew. Chem. 37, 550 (1998)

    Article  Google Scholar 

  5. Y.N. Xia, J.A. Rojers, K.E. Paul, G.M. Whitesides, Chem. Rev. 99, 1823 (1999)

    Article  Google Scholar 

  6. Y.S. Kim, H.H. Lee, P.T. Hammond, Nanotechnology 14, 1140 (2003)

    Article  ADS  Google Scholar 

  7. Y.S. Kim, N.Y. Lee, J.R. Lim, M.J. Lee, S.S. Park, Chem. Mater. 17, 5867 (2005)

    Article  Google Scholar 

  8. D. Qin, Y.N. Xia, G.M. Whitesides, Nat. Protoc. 5, 491 (2010)

    Article  Google Scholar 

  9. T.W. Lee, O. Mitrofanov, J.W.P. Hsu, Adv. Funct. Mater. 15, 1683 (2005)

    Article  Google Scholar 

  10. D. Losic, J.G. Mitchell, R. Lai, N.H. Voelcker, Adv. Funct. Mater. 17, 2439 (2007)

    Article  Google Scholar 

  11. B.D. Gates, Q.B. Xu, J.C. Love, D.B. Wolfe, G.M. Whitesides, Annu. Rev. Mater. Res. 34, 339 (2004)

    Article  ADS  Google Scholar 

  12. J.H. Kim, M.H. Kim, M.J. Lee, J.S. Lee, K.S. Shin, Y.S. Kim, Adv. Mater. 21, 4050 (2009)

    Article  Google Scholar 

  13. J.H. Choi, D.H. Kim, P.J. Yoo, H.H. Lee, Adv. Mater. 17, 166 (2005)

    Article  Google Scholar 

  14. T.H. Park, Y.M. Kim, Y.W. Park, J.H. Choi, J.W. Jeong, K.Y. Dong, K.C. Choi, B.K. Ju, Appl. Phys. Lett. 95, 093301 (2009)

    Article  ADS  Google Scholar 

  15. J.Y. Park, J.H. Park, E.H. Kim, C.W. Ahn, H.I. Jang, J.A. Rogers, S.W. Jeon, Adv. Funct. Mater. 23, 860 (2011)

    Google Scholar 

  16. T.W. Odom, J.C. Love, D.B. Wolfe, K.E. Paul, G.M. Whitesides, Langmuir 18, 5314 (2002)

    Article  Google Scholar 

  17. H. Namatsu, K. Kurihara, M. Nagase, K. Iwadate, K. Murase, Appl. Phys. Lett. 66, 2655 (1995)

    Article  ADS  Google Scholar 

  18. T. Tanaka, M. Morigami, N. Atoda, Jpn. J. Appl. Phys. 32, 6059 (1993)

    Article  ADS  Google Scholar 

  19. H. Schmid, B. Michel, Macromolecules 33, 3042 (2000)

    Article  ADS  Google Scholar 

  20. Y. Zhang, C.W. Lo, J.A. Taylor, S. Yang, Langmuir 22, 8595 (2006)

    Article  Google Scholar 

  21. S. Wu, Polymer Interface and Adhesion (Marcel Dekker, New York, 1982)

    Google Scholar 

  22. R. Smith, R. Pitrola, J. Appl. Polym. Sci. 83, 997 (2002)

    Article  Google Scholar 

Download references

Acknowledgement

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education Science and Technology (grant number: NRF-2010-0012249). This work was supported by a grant (Code No. 2011-0032147) from the Center for Advanced Soft Electronics under the Global Frontier Research Program of the MEST, Korea.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chi Won Ahn or Jae Hong Park.

Additional information

H.-I. Jang and Prof. S. Ko are contributed equally to this paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jang, HI., Ko, S., Park, J. et al. Reversible creation of nanostructures between identical or different species of materials. Appl. Phys. A 108, 41–52 (2012). https://doi.org/10.1007/s00339-012-6999-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-012-6999-y

Keywords

Navigation